
 

On Bismut's Hypoelliptic Laplacian
I shall talk about some work

of J M Bismut that is

perhaps still a few years
ahead of its time

It has a direct bearing on

topics presumably of interest to representation
theorists e g it provides a new formula for
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Bismut's derivation of his formula is wholely
derived from his approach to index theory



What Does the Hypoelliptic Laplacian Do Exact

From the point of view of representation theory the

major appication is a formula for semisimple
orbital integrals Seongclass is dy
this includes non regular orbits like e E G

what kind of formula

The formula involves the integral heat kernel of
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Harish Chandra also has a formula in the

same special case it is
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sphericalprincipal series

which is different but equivalent of come

Brunt's formula for a general
orbital integral of the function

g exp ta gk eK
still is more complicated but
in the same vein S

And for instance he recovers Selberg's
formula
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What is the Hypoelliptic Laplacian

From now on I shall consider an extremely
simple example the circle IT Bismut

studied compact groups before studying
Glk and one could stay compact
symmetric spaces too

Ingredients for the hypoelliptz Laplacian
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The ingredients are rather

ordinary but they are

combined in a decidedly
unorthodox fashion

Definition The hypoelliptic Laplacian
on the circle is the family of
operators
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This is

Not a Laplacian
Not positive definite
Not even self adjoint

However it is indeed hypoelliptic



b Independence of the Supertrace

Despite its demerits the hypoelliptic Laplacian
has a number of remarkable properties
In the first lecture we noted in the context

of Lefschetz theory that

Zeittrace Ethan rims
is independent of t 0

Something similar is true here

Theorem the quantity

Str ét Tr to éths
is independent of b 0 but not

t 0

This is a simplealgebraic fact like the chain

homotopy argument for Lefschetz based

on the fact that D2 commutes with Q
and this explains the use of Kostant's D
in general

Not so simple analytic fact the traces make

sense in the first place Kolmogorov Hormander



Large b Limit

General plan get a formula by
studying b x this is like studying
t o in the Lefschetz story and

by studying b 0 this step doesn't

really exist in the Lefschetz story or at

least it is very easy here it is not

Remark As for t in the Bismut story
it will remain fixed

Carrying out the plan is technically difficult
because Lb is not a Laplacian not elliptic
not self adjoint etc

One also needs to exploit two features of Lb
that were brilliantly engineered into the definition

by BBmnt

Here is a picture of
exp ta Xuxa for
MT and various

values of t 0

The concentration property
was exploited in Lecture 1 x x2 x



And here are pictures of the functions

w strfexpl tLb71 sbwJ.Co but

multiply by b and integrate over y to

get by b independent operator supertrace
for various values of b o with b o

going downwards

Graphs of w strfexpl tLb7l sbwJ.Co bus

The concentrators occur at integers It and

they are from the tem yd ox in Lb
Note that this generates the geodesic flow
on Tx r E tangent bundle of the circle



Shift Property
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It follows that for large b the integral kernel

expft Lb x y Maya

concentrates not on the diagonal

AFR E TNR x THR

I nt on the shifted diagonal

x y X2 Eye Tz

And note that

shifted Diagonal M Standard Diagonal

ix Em ix In nez

For w by the
intersection is

we 23



Small b Limit

Remember that
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It is a remarkable fact that despite having
subtracted out D the operator 22 0 2

on IT is still somehow present in Lb

Theorem Using the embedding
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This is a completely new phenomenon not

geometric or algebraic but spectral



We get the Selberg trace formula for
IT from this
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Thank You


