Theta correspondence and special unipotent representations  $\!\!\!\!^*$ 

Chen-Bo Zhu (National University of Singapore)

Seminar in Representation Theory (Sept. 8, 2021)

\*Joint with Barbasch, Ma and Sun

### Contents

- 1. Dual pairs and theta lifting
- 2. Theta lifting by matrix coefficient integrals
- 3. Preservation of unitarity
- 4. Combinatorial parameters for special unipotent representations
- 5. Construction and classification

### 1 Dual pairs and theta lifting

#### **Basics of Howe's theory**

- W: a finite-dimensional real symplectic vector space.
- $\sigma$ : the anti-involution of  $\operatorname{End}_{\mathbb{R}}(W)$  determined by  $\langle , \rangle_W$ .
- (A, A'): a pair of  $\sigma$ -stable semisimple  $\mathbb{R}$ -subalgebras of  $\operatorname{End}_{\mathbb{R}}(W)$  that are mutual centralizers of each other.
- $G := A \cap \operatorname{Sp}(W)$  and  $G' := A' \cap \operatorname{Sp}(W)$ .
- (G, G'): a reductive dual pair in Sp(W).
  - irreducible if the algebra A (or A') is either simple or the product of two simple algebras that are exchanged by  $\sigma$ .

Construction of irreducible dual pairs:

• (D,  $\sigma_0$ ): an  $\mathbb{R}$ -algebra with an anti-involution

 $(\mathbb{R}, \mathrm{id}), \quad (\mathbb{C}, \mathrm{id}), \quad (\mathbb{C}, \overline{\phantom{a}}), \quad (\mathbb{H}, \overline{\phantom{a}}),$ 

 $(\mathbb{R}\times\mathbb{R},\leftrightarrow),\quad (\mathbb{C}\times\mathbb{C},\leftrightarrow),\quad (\mathbb{H}\times\mathbb{H},(x,y)\mapsto(\bar{y},\bar{x})).$ 

- V: an  $\epsilon$ -Hermitian right D-module, where  $\epsilon = \pm 1$ .
- G(V): the isometry group of V, is a <u>classical Lie group</u>:
  - a real orthogonal/symplectic group;
  - a complex orthogonal/symplectic group;
  - a unitary group;
  - a quaternionic symplectic/orthogonal group;
  - a real/complex/quaternionic general linear group.

- V': an  $\epsilon'$ -Hermitian right D-module, where  $\epsilon\epsilon' = -1$ .
- $W := \operatorname{Hom}_{\mathcal{D}}(V, V')$ , with the symplectic form

$$\langle T, S \rangle_W := \operatorname{Tr}_{\mathbb{R}}(T^*S), \qquad T, S \in \operatorname{Hom}_{\mathcal{D}}(V, V').$$

• Identify G(V) and G(V') with subgroups of Sp(W) via the natural homomorphism:  $G(V) \times G(V') \longrightarrow Sp(W)$ :

$$(g,g') \cdot T = g'Tg^{-1}, \qquad g \in G, \ g' \in G', \ T \in W.$$

- If both V and V' are nonzero, then (G(V), G(V')) is an irreducible reductive dual pair in Sp(W).
- All irreducible reductive dual pairs arise in this way.

(G, G'): a reductive dual pair in Sp(W).

•  $H(W) := W \times \mathbb{R}$ , the Heisenberg group with group multiplication

 $(u,t)\cdot(u',t')=(u+u',t+t'+\langle u,u'\rangle_W), \qquad u,u'\in W, \ t,t'\in\mathbb{R}.$ 

- Fix a nontrivial unitary character  $\psi : \mathbb{R} \to \mathbb{C}^{\times}$ .
- Stone-von Neumann Theorem: there exists a <u>unique</u> irreducible unitary representation of H(W) with central character  $\psi$ .

• Define the Jacobi group

$$J := (\widetilde{G} \times \widetilde{G}') \ltimes \mathrm{H}(W),$$

where  $\widetilde{G}$  and  $\widetilde{G}'$  are finite fold coverings of G and G'.

- e.g. take the inverse image of (G, G') in Sp(W) (the real metaplectic group).
- Assume that J has a unitary representation  $\widehat{\omega}$  such that  $\widehat{\omega}|_{\mathcal{H}(W)}$  is irreducible with central character  $\psi$ .
  - All such representations, if they exist, are isomorphic to each other up to twisting by unitary characters. Fix one  $\hat{\omega}$ .
  - $\omega$ : the space of smooth vectors of  $\widehat{\omega}|_{\mathcal{H}(W)}$ .
    - \* called a smooth oscillator representation of J.

- $\pi$ : a Casselman-Wallach representation of G.
  - The <u>full theta lift</u> of  $\pi$ :

 $\Theta_{\widetilde{G}}^{\widetilde{G}'}(\pi) := (\omega \widehat{\otimes} \pi^{\vee})_{\widetilde{G}}, \qquad \text{(the Hausdorff coinvariant space)}.$ 

• The theta lift  $\theta_{\widetilde{G}}^{\widetilde{G}'}(\pi)$  of  $\pi$ :

the largest semisimple quotient of  $\Theta_{\widetilde{G}}^{\widetilde{G}'}(\pi)$ .

• Howe duality theorem: if  $\pi$  is irreducible, then  $\theta_{\tilde{G}}^{\tilde{G}'}(\pi)$  is irreducible or zero. Consequently,

- theta lifting is injective: for any irreducible  $\pi_1$  and  $\pi_2$  of  $\tilde{G}$ , if  $\theta_{\tilde{G}}^{\tilde{G}'}(\pi_1) \cong \theta_{\tilde{G}}^{\tilde{G}'}(\pi_2) \neq \{0\}$ , then  $\pi_1 \cong \pi_2$ .

# 2 Theta lifting via matrix coefficient integrals

V: an  $\epsilon$ -Hermitian right D-module. Fix a maximal compact subgroup  $K_V$  of G(V).

•  $\Psi_V$ : the function of G(V) such that

- it is bi- $K_V$ -invariant; and for all hyperbolic elements  $g \in G(V)$ ,

$$\Psi_V(g) = \prod_a \left(\frac{1+a}{2}\right)^{-\frac{1}{2}}.$$

where a runs over all eigenvalues of  $g \otimes 1 : V \otimes_{\mathbb{R}} \mathbb{C} \to V \otimes_{\mathbb{R}} \mathbb{C}$ , counted with multiplicities.

•  $\Xi_V$ : the bi- $K_V$ -invariant Harish-Chandra's  $\Xi$  function on G(V).

$$\nu_V := \operatorname{rank}_{\mathcal{D}}(V) - \frac{2 \dim_{\mathbb{R}} \{ t \in \mathcal{D} \mid t^{\sigma_0} = \epsilon t \}}{\dim_{\mathbb{R}}(\mathcal{D})}.$$

• If G(V) is noncompact, then  $\nu_V$  is the smallest real number such that

 $\Psi_V^{\nu_V} \cdot \Xi_V^{-1}$  is bounded.

• Given  $\nu \in \mathbb{R}$ , a positive function  $\Psi$  on G(V) is said to be <u> $\nu$ -bounded</u> if there is a real number r > 0 such that

 $\Psi(kak') \le (\log(3 + \operatorname{Tr}_{\mathbb{R}}(a)))^r \cdot \Psi_V^{\nu}(a) \cdot \Xi_V(a)$ 

for all  $k, k' \in K_V$  and all hyperbolic elements  $a \in G(V)$ .

• A Casselman-Wallach representation  $\pi$  of  $\widetilde{G}$  is said to be  $\underline{\nu}$ -bounded if there exist a  $\nu$ -bounded positive function  $\Psi$  on G(V), and continuous seminorms  $|\cdot|_{\pi}$  and  $|\cdot|_{\pi^{\vee}}$  on  $\pi$  and  $\pi^{\vee}$ (respectively) such that

 $|\langle \tilde{g} \cdot u, v \rangle| \leq \Psi(g) \cdot |u|_{\pi} \cdot |v|_{\pi^{\vee}}$ 

for all  $u \in \pi$ ,  $v \in \pi^{\vee}$ , and  $\tilde{g} \in \tilde{G}$ .

Let  $\pi$  be a Casselman-Wallach representation of  $\widetilde{G}$ . Assume that  $\pi$  is genuine, namely the kernel of  $\widetilde{G} \to G$  acts on  $\pi$  and  $\omega$  by the same character.

- $\pi$  is said to be <u>convergent</u> for  $\Theta_{\widetilde{G}}^{\widetilde{G}'}$  if it is  $\nu$ -bounded for some  $\nu > \nu_V \operatorname{rank}_{D}(V')$ .
- Then the integral

 $\begin{array}{rcl} \omega \times \pi^{\vee} \times \bar{\omega} \times \pi & \to & \mathbb{C}, \\ (\phi, v', \phi', v) & \mapsto & \int_{G} \langle \tilde{g} \cdot \phi, \phi' \rangle \cdot \langle \tilde{g} \cdot v', v \rangle \, dg, \end{array}$ 

is <u>absolutely convergent</u> and it yields a continuous bilinear map

 $(\omega\widehat{\otimes}\pi^{\vee})\times(\bar{\omega}\widehat{\otimes}\pi)\to\mathbb{C}.$ 

### • Define

$$\bar{\theta}_{\tilde{G}}^{\tilde{G}'}(\pi) := \frac{\omega \widehat{\otimes} \pi^{\vee}}{\text{the left kernel of the bilinear map}}$$

This is a quotient of  $\Theta_{\widetilde{G}}^{\widetilde{G}'}(\pi)$ , and hence a Casselman-Wallach representation of  $\widetilde{G}'$ .

## **3** Preservation of unitarity

•  $\pi$  is said to be <u>overconvergent</u> for  $\Theta_{\widetilde{G}}^{\widetilde{G}'}$  if it is  $\nu$ -bounded for some  $\nu > \nu_V^{\circ} - \operatorname{rank}_D(V')$ , where

 $\nu_{V}^{\circ} := \begin{cases} \nu_{V} + 1, & \text{if } G \text{ is a real/complex odd orthogonal group;} \\ \nu_{V} + \frac{1}{2}, & \text{if } G \text{ is a quaternionic symp./orth. group;} \\ \nu_{V}, & \text{otherwise.} \end{cases}$ 

• **Theorem:** Assume that  $\operatorname{rank}_{D}(V') \geq \nu_{V}^{\circ}$ , and  $\pi$  is overconvergent for  $\Theta_{\widetilde{G}}^{\widetilde{G}'}$ . If  $\pi$  is unitarizable, so is  $\bar{\theta}_{\widetilde{G}}^{\widetilde{G}'}(\pi)$ .

#### **Remarks**:

- Given that  $\bar{\theta}_{\tilde{G}}^{\tilde{G}'}(\pi)$  is unitarizable, it is a semisimple quotient of  $\Theta_{\tilde{G}}^{\tilde{G}'}(\pi)$ . Thus if  $\pi$  is irreducible and  $\bar{\theta}_{\tilde{G}}^{\tilde{G}'}(\pi) \neq \{0\}$ , then Howe Duality Theorem implies that  $\theta_{\tilde{G}}^{\tilde{G}'}(\pi) = \bar{\theta}_{\tilde{G}}^{\tilde{G}'}(\pi)$  and is irreducible.
- Important earlier work in the same direction were due to Li and He.

4 Combinatorial parameters for special unipotent representations

- We illustrate using the examples of real even orthogonal groups and real symplectic groups, and
- construct a <u>parameter set</u> which underlies the special unipotent representations of both groups.

**Notation**: For a Young diagram i, write  $\mathbf{R}_i(i)$  and  $\mathbf{C}_i(i)$   $(i \in \mathbb{N}^+)$  respectively for its *i*-th row length and *i*-th column length.

• Let  $\check{\mathcal{O}}$  be a nonempty Young diagram which satisfies the following good parity condition (for type D and C):

All nonzero row lengths of  $\check{\mathcal{O}}$  are <u>odd</u>.

$$m := |\check{\mathcal{O}}| := \sum_{i=1}^{\infty} \mathbf{R}_i(\check{\mathcal{O}})$$
 and  $l := \mathbf{C}_1(\check{\mathcal{O}}).$ 

• Define a pair  $(i_{\check{\mathcal{O}}}, j_{\check{\mathcal{O}}})$  of Young diagrams such that the nonzero column lengths are given by

$$\mathbf{C}_{i}(\imath_{\check{\mathcal{O}}}) = \frac{\mathbf{R}_{2i}(\check{\mathcal{O}})+1}{2}, \quad 1 \le i \le \frac{l-1}{2};$$
$$\mathbf{C}_{i}(\jmath_{\check{\mathcal{O}}}) = \frac{\mathbf{R}_{2i-1}(\check{\mathcal{O}})-1}{2}, \quad 1 \le i \le \frac{l+1}{2},$$

if l is odd, and

$$\mathbf{C}_{i}(i_{\check{\mathcal{O}}}) = \frac{\mathbf{R}_{2i-1}(\check{\mathcal{O}})+1}{2}, \quad 1 \le i \le \frac{l}{2};$$
$$\mathbf{C}_{i}(j_{\check{\mathcal{O}}}) = \frac{\mathbf{R}_{2i}(\check{\mathcal{O}})-1}{2}, \quad 1 \le i \le \frac{l}{2}.$$

if l is even.

We introduce the set BOX(i) of boxes of a Young diagram *i*:  $BOX(i) := \{(i, j) \in \mathbb{N}^+ \times \mathbb{N}^+ \mid j \leq \mathbf{R}_i(i)\},\$ 

and introduce five symbols  $\bullet$ , s, r, c and d to fill the boxes.

• A painting on a Young diagram i is a map

 $\mathcal{P}: \operatorname{Box}(i) \to \{\bullet, s, r, c, d\}$ 

with the following properties:

- $\mathcal{P}^{-1}(S)$  is the set of boxes of a Young diagram when  $S = \{\bullet\}, \{\bullet, s\}, \{\bullet, s, r\}$  or  $\{\bullet, s, r, c\};$
- when  $S = \{s\}$  or  $\{r\}$ , every row of i has at most one box in  $\mathcal{P}^{-1}(S)$ ;
- when  $S = \{c\}$  or  $\{d\}$ , every column of i has at most one box in  $\mathcal{P}^{-1}(S)$ .

• Define  $PBP(\check{O})$  to be the set of all pairs  $(\mathcal{P}, \mathcal{Q})$ , where  $\mathcal{P}$  and  $\mathcal{Q}$  are paintings on  $\imath_{\check{O}}$  and  $\jmath_{\check{O}}$  respectively, such that

$$- \mathcal{P}^{-1}(\bullet) = \mathcal{Q}^{-1}(\bullet);$$

– the image of  ${\mathcal P}$  is contained in

$$\begin{cases} \{\bullet, r, c, d\}, & \text{if } l \text{ is odd}; \\ \{\bullet, s, r, c, d\}, & \text{if } l \text{ is even.} \end{cases}$$

– the image of  $\mathcal{Q}$  is contained in

$$\{\bullet, s\},$$
 if  $l$  is odd;  
 $\{\bullet\},$  if  $l$  is even.

• We call  $(\mathcal{P}, \mathcal{Q})$  a painted bipartition attached to  $\check{\mathcal{O}}$ .

For  $\tau = (\mathcal{P}, \mathcal{Q}) \in \text{PBP}(\check{\mathcal{O}})$ , we associate a <u>classical group</u>  $G_{\tau}$  as follows.

- If l is odd, define  $G_{\tau} := \operatorname{Sp}_{m-1}(\mathbb{R})$ .
- If l is even, define the signature  $(p_{\tau}, q_{\tau})$  by counting the various symbols appearing in  $(i_{\check{\mathcal{O}}}, \mathcal{P}), (j_{\check{\mathcal{O}}}, \mathcal{Q})$ :

$$p_{\tau} := (\#\bullet) + 2(\#r) + (\#c) + (\#d);$$
$$q_{\tau} := (\#\bullet) + 2(\#s) + (\#c) + (\#d).$$

Define  $G_{\tau} := \mathcal{O}(p_{\tau}, q_{\tau})$ . Also define  $\varepsilon_{\tau} \in \mathbb{Z}/2\mathbb{Z}$  such that  $\varepsilon_{\tau} = 0$  if and only if the symbol d occurs in the first column of  $\mathcal{P}$ .

- If l > 1, we define Õ' to be the Young diagram obtained from
  Õ by removing the first row.
- There is a (combinatorially defined) descent map

 $\nabla: \operatorname{PBP}(\check{\mathcal{O}}) \to \operatorname{PBP}(\check{\mathcal{O}}').$ 

- Define  $PP(\check{\mathcal{O}})$  to be the set of all  $i \in \mathbb{N}^+$  such that  $\mathbf{R}_i(\check{\mathcal{O}}) > \mathbf{R}_{i+1}(\check{\mathcal{O}}) > 0$  and  $i \equiv l \pmod{2}$ .
- Define the (extended) parameter set

 $\mathrm{PBP}^{\mathrm{ext}}(\check{\mathcal{O}}) := \mathrm{PBP}(\check{\mathcal{O}}) \times \{\wp \subset \mathrm{PP}(\check{\mathcal{O}})\}.$ 

For each  $(\tau, \wp) \in \text{PBP}^{\text{ext}}(\check{\mathcal{O}})$ , we will construct a representation  $\pi_{\tau,\wp}$  of  $G_{\tau}$ .

## **5** Construction and classification

 $\check{\mathcal{O}}$ : a nonempty Young diagram satisfying the good parity condition, and  $(\tau, \wp) \in \text{PBP}^{\text{ext}}(\check{\mathcal{O}})$ .

- Let  $G := G_{\tau}$ , whose complexification  $G_{\mathbb{C}}$  equals  $\operatorname{Sp}_{m-1}(\mathbb{C})$  or  $O_m(\mathbb{C})$  respectively when l is odd or even.
- The Langlands dual of  $G_{\mathbb{C}}$  is defined to be  $\mathcal{O}_m(\mathbb{C})$ .
- View  $\check{\mathcal{O}}$  as a nilpotent  $\mathcal{O}_m(\mathbb{C})$ -orbit in  $\mathfrak{o}_m(\mathbb{C})$ .

- Take an  $\mathfrak{sl}_2$ -triple  $(\check{e},\check{h},\check{f})$  in  $\mathfrak{o}_m(\mathbb{C})$  such that  $\check{e}\in\check{\mathcal{O}}$ . Then  $\frac{1}{2}\check{h}$  is a semisimple element of  $\mathfrak{o}_m(\mathbb{C})$ , which determines a character  $\chi(\check{\mathcal{O}}):\mathcal{U}(\mathfrak{g})^{G_{\mathbb{C}}}\to\mathbb{C}$  in the usual way.
- By a theorem of Dixmier, there exists a unique maximal G-stable ideal of U(g) that contains the kernel of χ(Ŏ). Write I<sub>Ŏ</sub> for this ideal.
- The associated variety of  $I_{\check{\mathcal{O}}}$  is the closure of a nilpotent orbit  $\mathcal{O} \in \operatorname{Nil}_{G_{\mathbb{C}}}(\mathfrak{g})$ , called the Barbasch-Vogan dual of  $\check{\mathcal{O}}$ .

**Definition**: (Barbasch and Vogan) an irreducible Casselman-Wallach representation  $\pi$  of G is said to be <u>special</u> unipotent attached to  $\check{\mathcal{O}}$  if  $I_{\check{\mathcal{O}}}$  annihilates  $\pi$ .

**Notation**: Unip<sub> $\mathcal{O}$ </sub>(G), the set of equivalent classes of irreducible Casselman-Wallach representations of G that are special unipotent attached to  $\mathcal{O}$ .

### Put

$$\operatorname{Unip}(\check{\mathcal{O}}) := \begin{cases} \operatorname{Unip}_{\check{\mathcal{O}}}(\operatorname{Sp}_{m-1}(\mathbb{R})), & \text{if } l \text{ is odd}; \\ \\ & \bigsqcup_{p,q \in \mathbb{N}, p+q=m} \operatorname{Unip}_{\check{\mathcal{O}}}(\operatorname{O}(p,q)), & \text{if } l \text{ is even.} \end{cases}$$

**Theorem:** Let  $\check{\mathcal{O}}$  be a nonempty Young diagram which satisfies the good parity condition. Then

$$#(\text{Unip}(\check{\mathcal{O}})) = \begin{cases} #(\text{PBP}^{\text{ext}}(\check{\mathcal{O}})), & \text{if } l \text{ is odd}; \\ 2#(\text{PBP}^{\text{ext}}(\check{\mathcal{O}})), & \text{if } l \text{ is even}. \end{cases}$$

For each  $(\tau, \wp) \in \text{PBP}^{\text{ext}}(\check{\mathcal{O}})$ , we shall construct an irreducible Casselman-Wallach representation  $\pi_{\tau,\wp}$  of G by <u>induction</u> on l.

- l = 1: the Young diagram  $\check{\mathcal{O}}$  has only one row. Then  $G = \operatorname{Sp}_{m-1}(\mathbb{R})$ , and the set  $\operatorname{PBP}^{\operatorname{ext}}(\check{\mathcal{O}})$  has a unique element. We define  $\pi_{\tau,\wp}$  to be the trivial representation of G.
- $l \geq 2$ : write  $\tau' := \nabla(\tau) \in \text{PBP}(\check{\mathcal{O}}')$ , and define

 $\wp' := \{ i \in \mathbb{N}^+ \mid i+1 \in \wp \} \subset \operatorname{PP}(\check{\mathcal{O}}').$ 

Write  $m' := |\check{\mathcal{O}}'|$  and  $G' := G_{\tau'}$ .

• G and G' form a reductive dual pair in Sp(W), where W is a real symplectic space of dimension (m-1)m' or m(m'-1), respectively when l is odd or even.

- Let  $J = (G \times G') \ltimes H(W)$  and  $\omega$  be a smooth oscillator representation (in which the orthogonal group acts via the natural linear action in a Schrodinger model).
- By induction hypothesis, we have an irreducible Casselman-Wallach representation  $\pi_{\tau',\wp'}$  of G'. Define

$$\pi_{\tau,\wp} := \begin{cases} \Theta_{G'}^G(\pi_{\tau',\wp'}^{\vee} \otimes \det^{\varepsilon_{\wp}}), & \text{if } l \text{ is odd}; \\ \\ \Theta_{G'}^G(\pi_{\tau',\wp'}^{\vee}) \otimes (1_{p_{\tau},q_{\tau}}^{+,-})^{\varepsilon_{\tau}}, & \text{if } l \text{ is even}. \end{cases}$$

Here  $\varepsilon_{\wp}$  denote the element in  $\mathbb{Z}/2\mathbb{Z}$  such that

$$\varepsilon_{\wp} = 1 \Leftrightarrow 1 \in \wp.$$

#### Theorem:

- (a) For every  $(\tau, \wp) \in \text{PBP}^{\text{ext}}(\check{\mathcal{O}})$ , the representation  $\pi_{\tau,\wp}$  of  $G_{\tau}$  is irreducible, unitarizable, and special unipotent attached to  $\check{\mathcal{O}}$ .
- (b) Suppose that l is odd so that  $G = \text{Sp}_{m-1}(\mathbb{R})$ . Then the following map is <u>bijective</u>:

$$PBP^{\text{ext}}(\check{\mathcal{O}}) \to \text{Unip}_{\check{\mathcal{O}}}(G),$$
$$(\tau, \wp) \mapsto \pi_{\tau, \wp}.$$

(c) Suppose that l is even, and p, q are non-negative integers with p + q = m. Then the following map is bijective:

$$\left\{ \begin{array}{ll} (\tau, \wp) \in \mathrm{PBP}^{\mathrm{ext}}(\check{\mathcal{O}}) \mid \\ (p_{\tau}, q_{\tau}) = (p, q) \end{array} \right\} \times \mathbb{Z}/2\mathbb{Z} \quad \rightarrow \quad \mathrm{Unip}_{\check{\mathcal{O}}}(\mathrm{O}(p, q)), \\ ((\tau, \wp), \epsilon) \quad \mapsto \quad \pi_{\tau, \wp} \otimes \mathrm{det}^{\epsilon} \,. \end{array}$$

- We have thus explicitly constructed all special unipotent representations in  $\operatorname{Unip}_{\check{\mathcal{O}}}(G)$ , when all row lengths of  $\check{\mathcal{O}}$  are odd.
- If some row lengths of  $\check{\mathcal{O}}$  are even, then they must come in pairs. Via irreducible unitary parabolic inductions, the construction of representations in  $\mathrm{Unip}_{\check{\mathcal{O}}}(G)$  is reduced to the case when all row lengths of  $\check{\mathcal{O}}$  are odd.
- In the same approach, we may parameterize and construct all special unipotent representations of the real classical groups GL<sub>n</sub>(R), GL<sub>n</sub>(C), GL<sub>n</sub>(H), U(p,q), O(p,q), Sp<sub>2n</sub>(R), O<sup>\*</sup>(2n), Sp(p,q), O<sub>n</sub>(C), Sp<sub>2n</sub>(C), as well as all metaplectic special unipotent representations of Sp<sub>2n</sub>(R) and Sp<sub>2n</sub>(C).

**Theorem**: (confirming the Arthur-Barbasch-Vogan conjecture for real classical groups)

- All special unipotent representations of the real classical groups are unitarizable;
- all metaplectic special unipotent representations of  $\operatorname{Sp}_{2n}(\mathbb{R})$ and  $\operatorname{Sp}_{2n}(\mathbb{C})$  are also unitarizable.

**Remark**: The unitarizability of special unipotent representations for quasisplit classical groups is independently due to Adams, Arancibia Robert and Mezo, as a consequence of their result

Arthur packet = ABV packet.

#### Special unipotent representations 31



