Outline ●	Question. Results 000000	g-action on $L^2(K/L)$ o cocococo cocococo cococococococococo	Further questions

Induced representation of Hermitian Lie groups from Heisenberg parabolic subgroups

Genkai Zhang, Göteborg, Sweden

Workshop on Branching Problems, 2021-06-10/11.

・ロト・日本・日本・日本・日本

Question. Results

Further questions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Questions. Results. Related/Earlier Results. Methods.
- Heisenberg parabolic subgroup P. Induced representation.
- Composition series, complementary series, unitary subrepresentations.
- Outlook: Further questions

Question. Results

 \mathfrak{g} -action on $L^2(K/L)$ \mathfrak{g} -action on $L^2(K/L)$ \mathfrak{g} -action on $L^2(K/L)$

Further questions

A D F A 同 F A E F A E F A Q A

Hermitian Lie group

- *G*, irreducible Hermitian Lie group. $\mathfrak{g} = \mathfrak{p} + \mathfrak{k}$, Cartan deco..
- $Z \in \mathfrak{k}$ center element. $\mathfrak{g}^{\mathbb{C}} = \mathfrak{p}^{-} + \mathfrak{k}^{\mathbb{C}} + \mathfrak{p}^{+}$, HC deco..
- t^C ⊂ t^C, Cartan subalgebra. *γ*₁, · · · *γ*_r, HC strongly orthogonal roots.
- *e*⁺, *e*⁻ root vectors for γ := γ₁, {*e*⁺, *e*⁻, *h* = [*e*⁺, *e*⁻]}, *sl*₂ triple.
- $\xi := \xi_e = e^+ + e^- \in \mathfrak{p}$, $\mathfrak{a} = \mathbb{R}\xi \subset \mathfrak{p}$ one-dimensional Abelian subspace.

Question. Results

g-action on $L^2(K/L)$ 0 000000 00 000

Further questions

(ロ) (同) (三) (三) (三) (○) (○)

Heisenberg parabolic subgroup and Induced Representation

- g = n₋₂ + n₋₁ + m + a + n₁ + n₂, root space decomposition of a = ℝξ.
- P = MAN, parabolic subgroup.
- $\nu \in \mathbb{C}$ viewed as $\xi_e \to \nu$.
- $I(\nu) := Ind_P^G(1 \otimes e^{\nu} \otimes 1)$, induced representation.

Question. Results

g-action on $L^2(K/L)$ 0 000000 00 00000

Further questions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Results. Method

• Results: Composition series, complementary series and unitary subrepresentations of $I(\nu)$.

• Method: Computing recursions of multiplications and differentiations of spherical polynomials for line bundles over K/L_0 (projectivization of G/P = K/L).

Question. Results

g-action on $L^2(K/L)$ 0 000000 00 000

Further questions

(ロ) (同) (三) (三) (三) (○) (○)

Earlier related results and methods

- Kostant, Johnson-Wallach, Cowling-Koranyi,:
- Howe-Tan: G = U(p, q), P Heisenberg parabolic;
 G = SO(p, q).
- Knapp-Speh: G = SU(2, n), *P* Heisenberg parabolic.
- Sahi: G conformal group of Jordan algebras (including Hermitian Lie algebra), P Siegel parabolic (≠ Heisenberg parabolic.)
- Barbasch studied extensively the spherical dual of classical groups, e.g., Sp(n, ℝ), Sp(n, ℂ).

- S.-T. Lee, Lee-Loke, Lee-Zhu: Complex classical groups, SO(p, q), Sp(p, q)..; in relation with dual pair correspondence.
- Johnson: *SO*(*n*, *n*), *Sp*(*p*, *p*).
- Many other works,
- Ørsted-Zhang, Zhang: *G* conformal group of Jordan algebras; we'll use similar method here.

(ロ) (同) (三) (三) (三) (○) (○)

Remark

• The appearance of Heisenberg groups in general simple Lie groups is classified by R. Howe (2008).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• A. Kaplan et al classified H-type groups in simple Lie groups (2018).

Question. Results

g-action on L²(K/L)

Further questions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

 \mathfrak{g} -actions on $L^2(K/L)$

- Decompose $L^2(K/L)$.
- Find *L*-invariant elements $\{\phi\}$ in $L^2(K/L)$.
- Compute the action of $\xi = e^+ + e^-$ on $L^2(K/L)^L$ using

recursion formulas for multiplication and differentiations of $\{\phi\}$.

Question. Results

 \mathfrak{g} -action on $L^2(K/L)$ ••••••• ••••••

Further questions

Circle bundle $G/P = K/L \rightarrow K/L_0$ over compact Hermitian symmetric space K/L_0

Realize $D = G/K \subset V = \mathbb{C}^d$, bounded symmetric domain.

Induced representation realized on $L^2(S)$, S = K/L,

$$L = \{ k \in K; ke = e \}, \quad \mathfrak{l} = \mathfrak{m} \cap \mathfrak{k} = \{ X \in \mathfrak{k}; Xe = 0 \} \subset \mathfrak{k}.$$

S = K/L manifold of rank one tripotents in V (in the sense of Jordan triple product).

 $S_1 := \mathbb{P}(K/L) = \text{projectivization of } K/L = K/L_0 \subset \mathbb{P}(V),$ $L_0 = \{k \in K; ke = \chi(k)e\},$

 $\chi(k)$ defines a character of L_0 . K/L_0 is a compact Hermitian symmetric space.

Example

G/K = SU(r, r + b), S = K/L = manifold of rank one partial

isometries. $K/L_0 = \mathbb{P}^{r-1} \times \mathbb{P}^{r+b-1}$, projective space of rank one

 $r \times (r+1)$ -matrices.

$$\xi = \begin{bmatrix} E_{11} \\ E_{11} \end{bmatrix} \in \mathfrak{su}(r, r+b)$$

Tangent space \mathfrak{q} of K/L_0 at $e = E_{11} \in K/L_0$, $\mathfrak{k} = \mathfrak{l}_0 + \mathfrak{q}$:

$$\mathfrak{q} = \{ \begin{bmatrix} \mathbf{0} & * \\ * & \mathbf{0} \end{bmatrix} \} \subset M_{r,r+b}$$

Question. Results

 \mathfrak{g} -action on $L^2(K/L)$ \mathfrak{o} \mathfrak{o}

Further questions

(ロ) (同) (三) (三) (三) (○) (○)

Example

• $G/K = E_{6(-14)}/Spin(10) \times SO(2)$, type V (exceptional) domain in $\mathbb{O}^2_{\mathbb{C}} = \mathbb{C}^{16}$.

 $K/L_0 = Spin(10) \times SO(2)/U(5) \times \times SO(2)$, compact dual of the classical domain $SO^*(10)/U(5)$ of 5 × 5-skew symmetric matrices.

(A complete table of (G, K) and (K, L_0) is given in the end.)

Question. Results

Further questions

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

L^2 -sections of line bundles over K/L_0

 (χ', L_0) defines holomorphic line bundle $K \times_{(L_0, \chi')} \mathbb{C}$ over K/L_0 . Circle bundle

$$K/L o K/L_0, \quad \chi: L \subset L_0 \to U(1), L = \operatorname{Ker} \chi.$$

$$L^{2}(K/L) = \sum_{l=-\infty}^{\infty} L^{2}(K/L_{0},\chi_{l}),$$

 $L^{2}(K/L_{0},\chi_{l}) = \{L^{2}\}$ -sections.

Question. Results

 \mathfrak{g} -action on $L^2(K/L)$ \mathfrak{o} \mathfrak{o}

Further questions

A D F A 同 F A E F A E F A Q A

To find $L^2(K/L_0, \chi_l)$ -deco.: Rank and HC roots for $(\mathfrak{k}, \mathfrak{l})$

- rank $(K/L_0) = 1$ if G = SU(n, 1) or $G = Sp(n, \mathbb{R})$; rank $(K/L_0) = 2$ otherwise.
- $K/L_0 = K_1/L_1$ semisimple compact symmetric space
- α_1, α_2 , HC strongly orthogonal roots for $(\mathfrak{t}_1, \mathfrak{l}_1)$, the semisimple part of \mathfrak{t}_1 .
- α_0 , dual element of the center element Z_0 .

Question. Results

Further questions

L²-decomposition

$$L^2(K/L_0,\chi_l)=\sum_{\mathbf{m}}W_{\mathbf{m},l},$$

 $W_{m,l}$ of highest weight

$$l\alpha_0 + \mathbf{m}, \mathbf{m} = m_1\alpha_1 + m_2\alpha_2,$$

 $m_1 \ge m_2 \ge |I|, \quad m_1 = m_2 = I, \mod 2.$

(I, I)-spherical invariants of L_0 ,

$$(W_{\mathbf{m},l})^{L_0,(l,l)} = \mathbb{C}\phi_{\mathbf{m},l}.$$

(Cartan-Helgason thm., generalized by Schlichtkrull)

Question. Results

 \mathfrak{g} -action on $L^2(K/L)$ \mathfrak{o} \mathfrak{o}

Further questions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

g-action

L-invariant element $\xi = e^+ + e^- \in \mathfrak{g}$ acts on

$$\sum_{\mathbf{m}=(m_1,m_2),l} \mathbb{C}\phi_{\mathbf{m},l}.$$

Let $\mathfrak{g} \neq \mathfrak{su}(d, 1), \mathfrak{sp}(r, \mathbb{R})$ and $\rho = half sum of positive roots for the symmetric pair (\mathfrak{k}_1^*, \mathfrak{l}_1)$

$$\rho = \rho_1 \alpha_1 + \rho_2 \alpha_2.$$

Question. Results

Further questions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem

$$\pi_{\nu}(\xi)\phi_{\mathbf{m},l}$$

$$=\sum_{\sigma=(\sigma_1,\sigma_2)=(\pm 1,\pm 1)} \left(\nu + \sigma_1(m_1 + \rho_1) + \sigma_2(m_2 + \rho_2) - (\rho_1 + \rho_2)\right)$$

$$\times \left(c_{\mathbf{m},l}(\mathbf{m} + \sigma, l+1)\phi_{\mathbf{m}+\sigma,l+1} + c_{\mathbf{m},l}(\mathbf{m} + \sigma, l-1)\phi_{\mathbf{m}+\sigma,l-1}\right).$$

The coefficients can be expressed as quotients of HC C-functions.

Question. Results

 \mathfrak{g} -action on $L^2(K/L)$

Further questions

Complementary series

Let $\rho_{\mathfrak{g}} =$ half sum of roots of \mathfrak{g} with respect to $\mathfrak{a} = \mathbb{R}\xi$.

Theorem

The complementary series $I(\nu)$ appears precisely in the range $\nu = \rho_{\mathfrak{g}} + \delta$, $|\delta| < \delta_0$,

$$\delta_0 = \begin{cases} 1+b, & \mathfrak{g} = \mathfrak{su}(r+b,r) \\ 3, & \mathfrak{g} = \mathfrak{so}^*(2r) \\ n-3, & \mathfrak{g} = \mathfrak{so}(2,n), \quad n > 4 \\ 3, & \mathfrak{g} = \mathfrak{e}_{6(-14)} \\ 5, & \mathfrak{g} = \mathfrak{e}_{7(-25)} \end{cases}$$

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

Question. Results

 \mathfrak{g} -action on $L^2(K/L)$ $\overset{\circ}{\overset{\circ}{}}$ $\overset{\circ}{}$ $\overset{\circ}{}$

Further questions

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Theorem

Suppose $\nu \leq 2\rho_2 - 2$ is an even integer. Then there are two unitarizable subrepresentations $S^{\pm}(\nu) \subset I(\nu)$ consisting of the *K*-types

$$S^{+}(\nu) = \sum_{(\mathbf{m},l): m_{1}-m_{2} \geq -\nu+2\rho_{1}} W_{\mathbf{m},l}, \quad S^{-}(\nu) = \sum_{(\mathbf{m},l): m_{1}-m_{2} \leq -\nu+2\rho_{2}} W_{\mathbf{m},l}.$$

Question. Results

g-action on L²(K/L) ○ ○ ○ ○ ○ ○ ○

Further questions

(日)

Remark

The case $\mathfrak{g} = \mathfrak{su}(d, 1), \mathfrak{g} = \mathfrak{sp}(r, \mathbb{R})$ can be treated by similar computations; somewhat simpler than the proof of Johnson-Wallach.

Question. Results

g-action on $L^2(K/L)$ 0 000000 00 000

Further questions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Further questions

- Non-compact realization on $L^2(N)$. Different approach using analysis on Heisenberg groups.
- "Cayley" identity for polynomial of CR-Laplacian operators.
- Heisenberg parabolically induced representations for non-Hermitian Lie groups.

D = G/K	G	K
$I_{r+b,r}$	SU(r+b,r))	$S(U(r+b) \times U(r))$
II_{2r}	$SO^{*}(4r)$	U(2r)
II_{2r+1}	$SO^{*}(4r + 2)$	U(2r + 1)
III_r	$Sp(r, \mathbb{R})$	U(r)
$IV_n, n > 4.(r = 2)$	SO(n,2)	$SO(n) \times SO(2)$
V(r = 2)	$E_{6(-14)}$	$Spin(10) \times SO(2)$
VI(r = 3)	$E_{7(-25)}$	$E_6 \times SO(2)$

Table 1: Non-compact Hermitian symmetric space D = G/K

D = G/K	$\mathbb{P}(S) = K/L_0 = K_1/L_1$
$I_{r+b,r}$	$I_{r+b-1}^{*} \times I_{r-1}^{*}$
II_{2r}	$I_{2,2r-2}^{*}$
II_{2r+1}	$I_{2,2r-1}^{*}$
III_r	I_{r-1}^{*}
$IV_n, n > 4$	IV_{n-2}^{*}
V	II_5^*
VI	V^*

Table 2: The compact Hermitian symmetric space $\mathbb{P}(S) = K/L_0$. D^* is the compact dual of D

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Outline o	Question. Results	g-action on L ² (K/L) ○ ○○○○○○ ○○○	Further questions ○○●
--------------	-------------------	--	--------------------------

Thank you!