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Branching laws for unitary representations
Let G be a Lie group and H a closed subgroup and let π be a unitary
irreducible representation (unirrep) of G .

For G ,H compact we have classical branching laws by Weyl,
Littlewood, Kostant and others given as direct sum decompositions

π|H '
⊕
τ∈Ĥ

m(π, τ)τ.

For reductive groups and possibly infinite dimensional representations
there are no such discrete branching laws anymore.
In this case branching laws can be given by a direct integral
decomposition of Hilbert spaces

π|H '
∫ ⊕
τ∈Ĥ

m(π, τ)τ dµ(τ).

Proving a branching law includes describing the measure dµ and its
support.
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m(π, τ)τ.

For reductive groups and possibly infinite dimensional representations
there are no such discrete branching laws anymore.
In this case branching laws can be given by a direct integral
decomposition of Hilbert spaces

π|H '
∫ ⊕
τ∈Ĥ
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Branching laws for smooth admissible representations
The existence of a non-trivial continuous linear H-map

π|H → τ

implies that τ occurs in π|H discretely.

Restricting to the smooth vectors π∞, continuous linear H-maps

π∞|H → τ∞ → τ

exist almost everywhere (symmetry breaking operators).
dim HomH(π∞|H , τ∞) ≥ m(π, τ) almost everywhere.
[Frahm, 2020]
π∞ is a smooth admissible irreducible G-representation.

Casselman embedding Theorem
Every smooth admissible irreducible representation of G occurs in a
principal series representation as a quotient.
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Branching laws for smooth admissible representations

Goal
For unitary (quotients of) principal series representations π and τ , find
symmetry breaking operators

Aπ,τ : π∞|H → τ∞.

Prove a Plancherel formula for f ∈ π∞

‖f ‖2π =
∫

Ĥ
m(π, τ)‖Aπ,τ f ‖2τ dµ(τ).
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Finite multiplicity pairs of real rank one

[Kobayashi and Oshima, 2013]
If

(G ,H) =


(O(1, n + 1),O(1,m + 1)× F ),
(U(1, n + 1) U(1,m + 1)× F ),
(Sp(1, n + 1),Sp(1,m + 1)× F ),
(F4(−20),Spin0(1, 8)× F ),

dim HomH(π|H , τ) <∞ for all smooth admissible irreducible
representations π of G and τ of H.

We abbreviate (G ,H) = (U(1, n + 1;F),U(1,m + 1;F)× F ),
F = R,C,H,O.
In particular a minimal parabolic of H acts with an open orbit on
G/PG , where PG is a minimal parabolic of G .
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Symmetry breaking operators between principal series
representations

Clemens Weiske (Paderborn University) 2021-06-11 8 / 25



Principal series representations

Let G be a real reductive Lie group with maximal compact subgroup KG .
Let PG = MG exp(aG)NG be a minimal parabolic subgroup of G .

Definition
For ξ ∈ M̂G and λ ∈ (aG)∗C the principal series representation πξ,λ is

C∞ − IndG
PG (ξ ⊗ eλ ⊗ 1),

which is given by left-regular action on the C∞-sections of the
homogeneous bundle

G ×PG (ξ ⊗ eλ+ρG ⊗ 1)→ G/PG .
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Principal series representations
Let H be a reductive subgroup of G with maximal compact subgroup KH .
Similarly for a minimal parabolic PH = MH exp(aH)NH of H we define the
principal series representations τη,ν as the C∞-sections of the bundle

H ×PH (η ⊗ eν+ρH ⊗ 1)→ H/PH .

πξ,λ depends holomorphically on λ, since for f ∈ πξ,λ

f (g) = e(−λ−ρG )H(g)f (κ(g)).

πξ,λ is generically irreducible and unitarizable with the L2(KG)-inner
product if λ is purely imaginary.
πξ,λ might still be unitarizable irreducible (complementary series) or
contain a unitarizable sub-quotient if equipped with a different inner
product 〈·, ·〉ξ,λ.
〈f , g〉ξ,λ = 〈f ,Tξ,λg〉L2(KG )
Tξ,λ : πξ,λ → πξ̃,λ̃

(In the rank one cases: πξ,λ → πξ,−λ)
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Principal series representations
Example
Let G = O(1, n + 1). Then dim aG = 1. Let λ ∈ (aG)∗C and ξ = 1.

Re(λ)

Im(λ)

−n
2

n
2−n+2

2
n+2

2
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Results
SBOs can be classified as distribution kernels with certain
PH -invariance

[Kobayashi and Speh, 2015, Kobayashi and Speh, 2018]
For (G ,H) = (O(1, n + 1),O(1, n)),

a full classification of SBOs HomH(πξ,λ|H , τη,ν), for ξ = α⊗
∧p(Cn),

η = β ⊗
∧q(Cn−1), α, β ∈ Ô(1)

explicit functional equation for the Knapp–Stein intertwining
operators for G and H.

[Frahm and Weiske, 2020]
For (G ,H) = (U(1, n + 1;F),U(1,m + 1;F)× F ), F = C,H,O we obtain

a full classification of SBOs HomH(π1,λ|H , τ1,ν),
explicit functional equation for the Knapp–Stein intertwining
operators for G and H.
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On the classification in the spherical case

There exists a holomorphic family of SBOs
Aλ,ν ∈ HomH(π1,λ|H , τ1,ν).

Aλ,ν vanishes on a discrete set L.
For (λ, ν) ∈ L we find two linear independent residues Bλ,ν and Cλ,ν .
The classification is given by

HomH(π1,λ|H , τ1,ν) =
{
CAλ,ν (λ, ν) /∈ L,
CBλ,ν ⊕ CCλ,ν (λ, ν) ∈ L,

except in the cases
(G ,H) = (U(1, n + 1),U(1, 1)× F ), (Sp(1, 2), Sp(1, 1)× F ), where
additional sporadic operators occur.

Clemens Weiske (Paderborn University) 2021-06-11 13 / 25
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Decomposition of unitary representations

Clemens Weiske (Paderborn University) 2021-06-11 14 / 25



Harmonic analysis on the open orbits
Let (G ,H) be real reductive and πξ,λ a principal series representation.

Assume there exist an open H-orbit O on G/PG .
Fix a basepoint x0 ∈ O and let Hx0 be the stabilizer in H.
Consider the H-map on πξ,λ|H given by

Φλf (h) 7→ f |O(hx0).

Φλ defines a continous H-intertwining operator

πξ,λ|H → C∞(H/Hx0 ,Vξ,λ),

Vξ,λ := H ×Hx0
(ξ ⊗λ+ρG ⊗1)x0 |Hx0

→ H/Hx0 .

Idea
Use harmonic analysis on the H-space H/Hx0 to decompose unitary
closures of C∞(H/Hx0 ,Vξ,λ) for each open H-orbit.
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Harmonic analysis on the open orbits
Let (G ,H) = (U(1, n + 1;F),U(1, n;F)), F = R,C,H,O.

There is one open H-orbit O and Hx0 is a compact subgroup of KH .

Lemma
There exist R > 0 such that im Φλ ⊆ L2(H/Hx0 ,Vξ,λ) for Re(λ) > −R.

For the unitary principal series λ ∈ iR the map Φλ is unitary.
for f ∈ πξ,λ, ‖f ‖2ξ,λ = 〈Φλf ,Φ−λTξ,λf 〉L2(H/Hx0 ) is well defined for
Re(λ) ∈ (−R,R).

Goal
Decompose L2(H/Hx0 ,Vξ,λ) and use analytic continuation in λ to expand
from (−R,R) towards other unitarizable representations.

Re(λ)( )
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Example (G , H) = (O(1, n + 1), O(1, n))

Hx0 = O(n) ⊆ KH = O(1)× O(n).
For Reλ > −1

2 ,

Φλ = Φ+
λ + Φ−λ : π1,λ|H → L2(H/Hx0) ∼= L2(H/KH)⊕ L2(H/KH , sgn).

By classical results on Riemannian symmetric spaces

L2(H/KH) =
∫ ⊕

iR+
τ̂1,ν dµ(ν),

‖f ‖2L2(H/KH) =
∫

iR
‖Aν f ‖2L2(KH)

dν
c(ν)c(−ν) .

By construction Aν ◦ Φ+
λ ∈ HomH(π1,λ|H , τ1,ν).
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Example (G , H) = (O(1, n + 1), O(1, n))
Lemma

Aν ◦ Φ+
λ = c(λ, ν)Aλ,ν ,

with c(λ, ν) = Γ ((2λ+ 2ν + 1)/4) Γ ((2λ− 2ν + 1)/4) .

Recall 〈f , g〉1,λ = 〈f ,T1,λg〉L2(KG ), T1,λ : π1,λ → π1,−λ.

For Re(λ) ∈ (−1
2 ,

1
2), f ∈ π1,λ (assuming Φ−λ f = 0)

‖f ‖21,λ = 〈f ,T1,λf 〉L2(KG ) = 〈Φλf ,Φ−λ ◦ T1,λf 〉L2(H/Hx0 )

=
∫

iR
〈Aν ◦ Φ+

λ f ,Aν ◦ Φ+
−λ ◦ T1,λf 〉L2(KH)

dν
c(ν)c(−ν)

=
∫

iR
〈Aλ,ν f ,A−λ,ν ◦ T1,λf 〉L2(KH)

c(λ, ν)c(−λ, ν)
c(ν)c(−ν) d ν

= t(λ)
∫

iR
〈Aλ,ν f ,Aλ,ν f 〉L2(KH)

c(λ, ν)c(−λ, ν)
c(ν)c(−ν) dν
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Example (G , H) = (O(1, n + 1), O(1, n))

Theorem
For the complementary series λ ∈ (−n

2 , 0)

π̂1,λ|H '
∫ ⊕

iR+
τ̂1,ν dν ⊕

⊕
k∈[0,−2λ−1

4 )∩Z

τ̂1,λ+ 1
2 +2k

⊕
∫ ⊕

iR+
τ̂sgn,ν dν ⊕

⊕
k∈[0,−2λ−3

4 )∩Z

τ̂sgn,λ+ 1
2 +2k

Recall that the factor Γ((2λ− 2ν + 1)/4) of c(λ, ν).
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Summary

With knowledge of

SBOs and their meromorphic structure,
Functional equations for the Knapp–Stein operators,
A Plancherel formula for L2(H/Hx0 ,Vξ,λ),

we can prove Plancherel formulas and unitary branching laws for πξ,λ|H by
analytic continuation.
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Results

Let (G ,H) = (O(1, n + 1),O(1, n)). Then MG = O(1)× O(n). Let
ξ = α⊗

∧p(Cn), α ∈ Ô(1).

We use the information about SBOs of [Kobayashi and Speh, 2018] and
the harmonic analysis of [Camporesi, 1997] to prove the explicit direct
integral decompositions and Plancherel formulas for all unitary
representations in πξ,λ.

Unitary principal series
Complementary series
All G-representations with non-trivial (g,K )-cohomology
[Speh and Venkataramana, 2011, Möllers and Oshima, 2015]
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We use the information about SBOs of [Kobayashi and Speh, 2018] and
the harmonic analysis of [Camporesi, 1997] to prove the explicit direct
integral decompositions and Plancherel formulas for all unitary
representations in πξ,λ.

Unitary principal series
Complementary series

All G-representations with non-trivial (g,K )-cohomology
[Speh and Venkataramana, 2011, Möllers and Oshima, 2015]

Clemens Weiske (Paderborn University) 2021-06-11 21 / 25



Results

Let (G ,H) = (O(1, n + 1),O(1, n)). Then MG = O(1)× O(n). Let
ξ = α⊗

∧p(Cn), α ∈ Ô(1).
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