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Branching laws for unitary representations

Let G be a Lie group and H a closed subgroup and let 7 be a unitary
irreducible representation (unirrep) of G.
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Branching laws for unitary representations
Let G be a Lie group and H a closed subgroup and let 7 be a unitary
irreducible representation (unirrep) of G.

@ For G, H compact we have classical branching laws by Weyl,
Littlewood, Kostant and others given as direct sum decompositions

|y =~ @ m(m, 7)T.

rel

@ For reductive groups and possibly infinite dimensional representations
there are no such discrete branching laws anymore.

@ In this case branching laws can be given by a direct integral
decomposition of Hilbert spaces

S
ol :/ m(m, )T du(T).
TEH

@ Proving a branching law includes describing the measure dp and its
support.

Clemens Weiske (Paderborn University) 2021-06-11 4/25



Branching laws for smooth admissible representations

@ The existence of a non-trivial continuous linear H-map
Ty — T

implies that 7 occurs in 7|y discretely.
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Branching laws for smooth admissible representations

@ The existence of a non-trivial continuous linear H-map
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implies that 7 occurs in 7|y discretely.
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Branching laws for smooth admissible representations

@ The existence of a non-trivial continuous linear H-map
Ty — T

implies that 7 occurs in 7|y discretely.
@ Restricting to the smooth vectors 7, continuous linear H-maps

Ty =7 =7

exist almost everywhere (symmetry breaking operators).
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Branching laws for smooth admissible representations

@ The existence of a non-trivial continuous linear H-map
Ty — T

implies that 7 occurs in 7|y discretely.
Restricting to the smooth vectors 7°, continuous linear H-maps

Ty =7 =7

exist almost everywhere (symmetry breaking operators).
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Branching laws for smooth admissible representations

@ The existence of a non-trivial continuous linear H-map
Ty — T

implies that 7 occurs in 7|y discretely.
Restricting to the smooth vectors 7°°, continuous linear H-maps

Ty =7 =7

exist almost everywhere (symmetry breaking operators).

dim Homy (7|, 7°°) > m(m, 7) almost everywhere.
[Frahm, 2020]
@ 7 is a smooth admissible irreducible G-representation.

Casselman embedding Theorem

Every smooth admissible irreducible representation of G occurs in a
principal series representation as a quotient.
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Branching laws for smooth admissible representations

Goal

For unitary (quotients of) principal series representations 7 and 7, find
symmetry breaking operators

Arqr g — 7.
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Branching laws for smooth admissible representations

Goal

For unitary (quotients of) principal series representations 7 and 7, find
symmetry breaking operators

Arqr g — 7.

Prove a Plancherel formula for f € 7°°

IF12 = [, mle, )l Ans fI2 ().
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Finite multiplicity pairs of real rank one

[Kobayashi and Oshima, 2013]

If

(O(1,n+1),0(1,m+1) x F),
(UL, n+1)U(L, m+ 1) x F),
(Sp(1,n+1),Sp(1,m+ 1) x F),
(F4(—20)7Spin0(178) X F)7

dim Homy(7 |y, 7) < oo for all smooth admissible irreducible
representations 7 of G and 7 of H.

(G7 H) =
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Finite multiplicity pairs of real rank one

[Kobayashi and Oshima, 2013]

If

(O(1,n+1),0(1, m+1) x F),
(U(l,n+1)U(1,m+1) x F),
(Sp(1,n+1),Sp(1,m+1) x F),
(F4(—20)7Spin0(178) X F)?

dim Homy(7 |y, 7) < oo for all smooth admissible irreducible
representations 7 of G and 7 of H.

(G7 H) =

e We abbreviate (G, H) = (U(1,n+ 1;F),U(1,m+ 1,F) x F),
F =R,C,H,O.

@ In particular a minimal parabolic of H acts with an open orbit on
G/Pg, where Pg is a minimal parabolic of G.
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Principal series representations

Let G be a real reductive Lie group with maximal compact subgroup Kg.
Let P = Mg exp(ag)Ng be a minimal parabolic subgroup of G.
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Principal series representations

Let G be a real reductive Lie group with maximal compact subgroup Kg.
Let P = Mg exp(ag)Ng be a minimal parabolic subgroup of G.

Definition
For ¢ € Mg and \ € (ag)¢ the principal series representation ¢ y is
@ A
C* —Indg_((®e" ®1),

which is given by left-regular action on the C*-sections of the
homogeneous bundle

G xp; (E®@eMPER1) — G/Pg.
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Principal series representations

Let H be a reductive subgroup of G with maximal compact subgroup Ky.
Similarly for a minimal parabolic Py = My exp(ay)Ny of H we define the
principal series representations 7, as the C°°-sections of the bundle

H xp, (n® """ @ 1) — H/Py.
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Similarly for a minimal parabolic Py = My exp(ay)Ny of H we define the
principal series representations 7, as the C°°-sections of the bundle

H xp, (n® """ @ 1) — H/Py.
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Principal series representations

Let H be a reductive subgroup of G with maximal compact subgroup Ky.
Similarly for a minimal parabolic Py = My exp(ay)Ny of H we define the
principal series representations 7, as the C°°-sections of the bundle

HXPH (77®e”+p”®1)ﬁ H/PH.

@ m¢ ) depends holomorphically on A, since for f € m¢ )

f(g) = el PIMOf((g)).

e ¢ is generically irreducible and unitarizable with the L2(K¢)-inner
product if A is purely imaginary.
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Principal series representations
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Principal series representations

Let H be a reductive subgroup of G with maximal compact subgroup Ky.
Similarly for a minimal parabolic Py = My exp(ay)Ny of H we define the
principal series representations 7, as the C°°-sections of the bundle

HXPH (77®e”+p”®1)% H/PH.

@ m¢ ) depends holomorphically on A, since for f € m¢ )

f(g) = el A PeHEf (k(g)).

e ¢ is generically irreducible and unitarizable with the L2(K¢)-inner
product if A is purely imaginary.

@ ¢ ) might still be unitarizable irreducible (complementary series) or
contain a unitarizable sub-quotient if equipped with a different inner
product (-, )¢ x.

o (f,g)en = (f, Ter8)12(ke)

© Ten:Ten — Tz (In the rank one cases: ¢\ — ¢ _))
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Principal series representations

Example
Let G=O(1,n+1). Thendimag =1. Let A € (ag)g and { = 1.

Im(A)

A

N
NIS
NI
N
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Results

@ SBOs can be classified as distribution kernels with certain
Py-invariance

[Kobayashi and Speh, 2015, Kobayashi and Speh, 2018]
For (G, H) = (O(1,n+1),0(1, n)),
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Results

@ SBOs can be classified as distribution kernels with certain
Py-invariance

[Kobayashi and Speh, 2015, Kobayashi and Speh, 2018]
For (G, H) = (O(1,n+ 1),0(1, n)),
e a full classification of SBOs Homy/(7¢ |1, 7;,0), for £ = a @ AP(C"),
n=p8&AN(C"1), a,8 € O(1)
@ explicit functional equation for the Knapp—Stein intertwining
operators for G and H.

[Frahm and Weiske, 2020]
For (G,H) = (U(1,n+ 1;F),U(1l,m+ 1,F) x F), F = C,H, O we obtain
e a full classification of SBOs Homy (71 |H, T1,.).

@ explicit functional equation for the Knapp—Stein intertwining
operators for G and H.
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On the classification in the spherical case

@ There exists a holomorphic family of SBOs
Ay € Hompy(myx|H, T1,0).
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@ A, vanishes on a discrete set L.
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On the classification in the spherical case

@ There exists a holomorphic family of SBOs
Ay € Hompy(myx|H, T1,0).
@ A, vanishes on a discrete set L.

@ For (A, v) € L we find two linear independent residues By, and C, ,.
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On the classification in the spherical case

@ There exists a holomorphic family of SBOs
A)\’V € HomH(WI,)\‘H,Tl,u)-
@ A, vanishes on a discrete set L.
@ For (A, v) € L we find two linear independent residues By, and C, ,.
@ The classification is given by

CA\L (A\v) ¢ L,

Homy (m1alH, T1,0) = {(CB)\ eCG,Y (Av)el

Clemens Weiske (Paderborn University) 2021-06-11 13 /25



On the classification in the spherical case

@ There exists a holomorphic family of SBOs
A)\J/ € HomH(WI,)\‘Hﬂ'l,u)-
@ A, vanishes on a discrete set L.
@ For (A, v) € L we find two linear independent residues By, and C, ,.

@ The classification is given by

CA\L (A\v) ¢ L,

Homy (m1alH, T1,0) = {(CB)\ eCG,Y (Av)el

@ except in the cases
(G, H) = (U(L,n+ 1),U(L, 1) x F), (Sp(L,2),5p(1, 1) x F), where
additional sporadic operators occur.
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Harmonic analysis on the open orbits

Let (G, H) be real reductive and ¢ \ a principal series representation.
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Harmonic analysis on the open orbits

Let (G, H) be real reductive and ¢ \ a principal series representation.
@ Assume there exist an open H-orbit O on G/Pg.
o Fix a basepoint xg € O and let Hy, be the stabilizer in H.
o Consider the H-map on 7¢ |4 given by

¢)\f(h) — f‘o(hXO).
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Harmonic analysis on the open orbits

Let (G, H) be real reductive and ¢ \ a principal series representation.
@ Assume there exist an open H-orbit O on G/Pg.
o Fix a basepoint xg € O and let Hy, be the stabilizer in H.
o Consider the H-map on 7¢ |4 given by

q))\f(h) — f‘o(hXO).
o &, defines a continous H-intertwining operator
7T§7)\|H — COO(H/HXO,V&)\),

V&)\ =H X Hy, (§ @M Pe ®1)XO|HXO — H/on-
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Harmonic analysis on the open orbits

Let (G, H) be real reductive and ¢ \ a principal series representation.

@ Assume there exist an open H-orbit O on G/Pg.
o Fix a basepoint xg € O and let Hy, be the stabilizer in H.
o Consider the H-map on 7¢ |4 given by

q))\f(h) — f‘o(hXO).
o &, defines a continous H-intertwining operator
7T§7)\|H — COO(H/HXO,V&)\),

V&)\ =H X Hy, (f @M Pe ®1)XO|HX0 — H/on-

Idea

Use harmonic analysis on the H-space H/H,, to decompose unitary
closures of C*°(H/H,,, Ve ») for each open H-orbit.
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Harmonic analysis on the open orbits

Let (G, H) = (U(1,n + 1;F),U(1, n; F)), F = R, C, H, O.
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Harmonic analysis on the open orbits
Let (G,H) = (U(1,n+ 1;F),U(1,n;F)), F=R,C,H,QO.
@ There is one open H-orbit O and H,, is a compact subgroup of K.
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Harmonic analysis on the open orbits
Let (G,H) = (U(1,n+ 1;F),U(1,n;F)), F=R,C,H,QO.
@ There is one open H-orbit O and H,, is a compact subgroup of K.

Lemma

There exist R > 0 such that im ®) C L2(H/Hy,, Vg,) for Re(A) > —R. J
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Harmonic analysis on the open orbits
Let (G,H) = (U(1,n+ 1;F),U(1,n;F)), F=R,C,H,QO.
@ There is one open H-orbit O and H,, is a compact subgroup of K.

Lemma

There exist R > 0 such that im ®) C L2(H/Hy,, Vg,) for Re(A) > —R. J

@ For the unitary principal series A € /R the map ®, is unitary.
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Harmonic analysis on the open orbits
Let (G,H) = (U(1,n+ 1;F),U(1,n;F)), F=R,C,H,QO.
@ There is one open H-orbit O and H,, is a compact subgroup of K.

Lemma

There exist R > 0 such that im ®) C L2(H/Hy,, Vg,) for Re(A) > —R. J

@ For the unitary principal series A € /R the map ®, is unitary.

o for f € m¢y, Hf||§>\ = <¢>\f7¢—AT$,>\f>L2(H/HXO) is well defined for
Re(\) € (=R, R).
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Harmonic analysis on the open orbits
Let (G,H) = (U(1,n+ 1;F),U(1,n;F)), F=R,C,H,QO.

@ There is one open H-orbit O and H,, is a compact subgroup of K.
Lemma

There exist R > 0 such that im ®) C L?(H/Hy,, Vg,) for Re(\) > —R. J

@ For the unitary principal series A € /R the map ®, is unitary.
o for f € m¢y, ||f||§>\ = <¢/\f7¢—>\T§,>\f>L2(H/HXO) is well defined for
Re(\) € (=R, R).
Goal

Decompose L?(H/Hx,, Ve,») and use analytic continuation in A to expand
from (—R, R) towards other unitarizable representations.

> Re()\)

A~
-

<
A
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Example (G, H) = (O(1,n+1),0(1, n))
o Hy, = O(n) C Ky = O(1) x O(n).
@ For Re )\ > —%,

Oy = O + 05 tmalw — L2(H/Hx) = L2(H/Ku) ® L*(H/Kn, sgn).
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Example (G, H) = (O(1,n+1),0(1, n))

e Hy, = 0(n) C Ky = 0O(1) x O(n).
@ For Re A > —%,

Oy = O + 05 tmalw — L2(H/Hx) = L2(H/Ku) ® L*(H/Kn, sgn).

@ By classical results on Riemannian symmetric spaces

@
LZ(H/KH) :/ 1,0 dp(v),
iRy
dv
2 . 2
100 = VAW cyer o
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Example (G, H) = (O(1,n+1),0(1, n))

H,, = O(n) C Ky = O(1) x O(n).
For Re A > —%,

Oy = O + 05 tmalw — L2(H/Hx) = L2(H/Ku) ® L*(H/Kn, sgn).

By classical results on Riemannian symmetric spaces

@
LZ(H/KH) :/ 1,0 dp(v),
iRy
dv
2 . 2
100 = VAW cyer o

By construction A, o &Y € Hompy(m1 |1, 71,.).
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Example (G, H) = (O(1,n+1),0(1, n))
Lemma

A, o ®F = c(\, v)A\,,
with c(A\,v) =T ((2A+2v+1)/4)T ((2A —2v +1)/4).

@ Recall <f,g>17)\ = <f, Tl,Ag>L2(K(;)v Tl’)\ ST — TL,—\-
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Example (G, H) = (O(1,n+1),0(1, n))
Lemma

A, o ®F = c(\, v)A\,,
with c(A\,v) =T ((2A+2v+1)/4) T ((2A —2v +1)/4).

@ Recall <f,g>17)\ = <f Ty )\g>L2(K(;) Tl)\ TN T T,
o For Re(\) € (—1,1), f € my\ (assuming &) f = 0)

||f||i>\ = (f, T1,>f>L2(KG) = (P, Py 0 Tl,Af>L2(H/HXO)

dv
c(v)e(=v)
c(A\v)e(—=A,v)

ey 7
c(A\,v)e(—=A,v)
O R

= /R<AV o] d)i_f, AV o (Di_)\ [e] Tl,)\f>L2(KH)
- /R<Ax,uf, A x o Tiaf) 2k

=t()\) /R<A>\,Vf’A>\7Vf>L2(KH)
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Example (G, H) = (O(1,n+1),0(1, n))

Theorem
For the complementary series A € (—%,0)

&
Tl /R T, dv® D TIA+142k
]
+ ke[o,=2=1)nz
®
©® R Tsgn,v dv & @ ngn,)\+%+2k
I
+ ke[0,=2=3)nz
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Example (G, H) = (O(1,n+1),0(1, n))

Theorem

For the complementary series A € (—%,0)

@
Tl / T, dv® @ 7&1,A+%+2k
R+ —2)\—1
kelo,—=—)NZ
&
D 7ﬁsgn,v dv @ @

R ngn,k—i—%—i—Zk
+ ke[0,=2=2)nz

Recall that the factor ['((2\ — 2v + 1)/4) of c(A,v).
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Summary

With knowledge of

o = = E DAy
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Summary

With knowledge of
@ SBOs and their meromorphic structure,
@ Functional equations for the Knapp—Stein operators,
o A Plancherel formula for L2(H/H,,, Ve 5),

we can prove Plancherel formulas and unitary branching laws for m¢ \|4 by
analytic continuation.
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Results

E=a® AP(C"), a € O(1).

Let (G, H) = (O(1,n+1),0(1, n)). Then Mg = O(1) x O(n). Let

o 5 = = DA
Clemens Weiske (Paderborn University)



Results

Let (G,H) = (O(1,n+1),0(1,n)). Then Mg = O(1) x O(n). Let
£=a® AP(C"), a € O(1).

We use the information about SBOs of [Kobayashi and Speh, 2018] and
the harmonic analysis of [Camporesi, 1997] to prove the explicit direct
integral decompositions and Plancherel formulas for all unitary
representations in g .
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Results

Let (G,H) = (O(1,n+1),0(1,n)). Then Mg = O(1) x O(n). Let
¢=a®AP(C"), a € O(1).

We use the information about SBOs of [Kobayashi and Speh, 2018] and
the harmonic analysis of [Camporesi, 1997] to prove the explicit direct
integral decompositions and Plancherel formulas for all unitary
representations in g .

@ Unitary principal series

@ Complementary series

@ All G-representations with non-trivial (g, K)-cohomology

@ [Speh and Venkataramana, 2011, Méllers and Oshima, 2015]
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Results

A

E=a®l, aecU(l).

Let (G,H) = (U(1,n+1),U(1, n)). Then Mg = U(1) x U(n). Let

o 5 = = DA
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Results

Let (G, H) = (U(1,n+1),U(1,n)). Then Mg = U(1) x U(n). Let
t=a®1,acl(1).

For (G,H) = (U(1,n+ 1),U(1, n)) we use the information about SBOs of
[Frahm and Weiske, 2020] and the harmonic analysis of [Shimeno, 1994]
to prove the explicit direct integral decompositions and Plancherel
formulas for all unitary representations in ¢ ».
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Results

Let (G,H) = (U(1,n+1),U(1,n)). Then Mg = U(1) x U(n). Let
t=a®1,acl(1).

For (G,H) = (U(1,n+ 1),U(1, n)) we use the information about SBOs of
[Frahm and Weiske, 2020] and the harmonic analysis of [Shimeno, 1994]
to prove the explicit direct integral decompositions and Plancherel
formulas for all unitary representations in ¢ ).

o Unitary principal series

Complementary series

Unitary highest/lowest-weight representations
Relative discrete series

[Speh and Zhang, 2016]
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