Multiplicities of stable eigenvalues of compact anti-de Sitter 3-manifolds

Kazuki Kannaka

RIKEN iTHEMS

June 11th, 2021

Outline

Outline

Our setting

$$\Gamma$$
 \subset $G = SO(2,2)$ \supset $H = SO(2,1)$

discrete

$$\rightsquigarrow \Gamma \curvearrowright G/H$$

Assume Γ is a discontinuous group for G/H. Furthermore, for simplicity, suppose Γ is torsion-free.

Our interest

Spectral properties of the differential operator \Box on $\Gamma \setminus G/H$

$$\Box := \frac{1}{8} (\text{the Casimir element for the Killing form of } \mathfrak{g})$$

Discontinuous groups for AdS^3

$$\sqcap$$
 \subset $G = \mathrm{SO}(2,2)$ \supset $H = \mathrm{SO}(2,1)$

discrete

 $\rightsquigarrow \Gamma \curvearrowright G/H$

Definition (Toshiyuki Kobayashi)

 Γ : discontinuous group for $G/H \stackrel{\text{def}}{\iff} \Gamma \curvearrowright G/H$: properly discontinuous

discontinuous gp. \neq discrete subgp.

- Γ : a discontinuous group for G/H
 - $\Gamma \setminus G/H$ is a C^{∞} -mfd
 - the quot. map. $G/H \to \Gamma \backslash G/H$ is a covering.

Anti-de Sitter 3-manifolds

Anti-de Sitter 3-mfd. $\stackrel{\text{def}}{=}$ Lorentz 3-mfd. of const. sect. curv. $\equiv -1$

Examples

AdS³ := SO(2,2)/SO(2,1) + the metric of sign (2,1) induced by ¹/₈(the Killing form of so(2,2))
Γ\AdS³ (Γ: discont. gp. for AdS³)

Fact (Kulkarni-Raymond + Klingler)

M: compact anti-de Sitter 3-mfd \rightarrow ∃ discont. gp. Γ for AdS³, *M* ≅ Γ\AdS³ up to finite covering

Hyperbolic Laplacian

Fact

 $\Box := \frac{1}{8}$ (the Casimir element for the Killing form of \mathfrak{g})

 \rightsquigarrow the Laplacian of the anti-de Sitter manifold $\Gamma \backslash {\rm AdS}^3$

(M,g): pseudo-Riemannian mfd. The Laplacian $\Box := \operatorname{div} \circ \operatorname{grad} \left(= \frac{1}{\sqrt{|g|}} \frac{\partial}{\partial x^i} \left(\sqrt{|g|} g^{ij} \frac{\partial}{\partial x^j} \right) \right)$

М	Riemann	Lorentz
	elliptic	hyperbolic

Multiplicity of discrete spectrum

Discrete spectrum (Kassel-Kobayashi)

(M, g): pseudo-Riemannian mfd.

- $L^2_{\lambda}(M) := \{ f \in L^2(M) \mid \Box f = \lambda f \text{ in the weak sense} \}$
- $\operatorname{Spec}_d(\Box) := \{\lambda \in \mathbb{C} \mid L^2_\lambda(M) \neq 0\}$

Multiplicity of discrete spectrum

$$\mathcal{N}_{\mathcal{M}}(\lambda) := \dim_{\mathbb{C}} L^{2}_{\lambda}(\mathcal{M})$$

$\mathcal{N}_{M}(\lambda)$ for compact MM Riemann Lorentz $\mathcal{N}_{M}(\lambda)$ $< \infty$?

Standard anti-de Sitter manifolds

$$\mathrm{U}(1,1)/\mathrm{U}(1)\times\{1\}\cong\mathrm{SO}(2,2)/\mathrm{SO}(2,1)=\mathrm{AdS}^3$$

Proposition (Kulkarni, Kobayashi)

Assume $\Gamma \subset \mathrm{U}(1,1) (\subset \mathrm{SO}(2,2))$

- discrete in $U(1,1) \Leftrightarrow \Gamma \curvearrowright AdS^3$ is properly discontinuously
- cocompact in $U(1,1) \Leftrightarrow \Gamma \curvearrowright AdS^3$ is cocompact

 \rightsquigarrow Existence of compact anti-de Sitter mfds

Multiplicity for standard anti-de Sitter manifolds

 $\lambda_m := 4m(m-1) \ (m \in \mathbb{N}) \ \cdots \ {\sf discrete \ spectrum \ of \ } \Box_{{
m AdS}^3}$

Theorem (Kassel-Kobayashi)

Assume $\Gamma \subset U(1, 1)$.

$$\exists m_0(\Gamma) \in \mathbb{R}, \ \forall m \geq m_0(\Gamma), \ \mathcal{N}_{\Gamma \setminus \mathrm{AdS}^3}(\lambda_m) = \infty$$

Fact (Kobayashi '98, Klingler '96)

There are cocompact discontinuous groups Γ for AdS^3 s.t. $\Gamma \subset SO(2,2)$ are Zariski dense

Main result 1

Main Theorem 1 (K.)

Assume Γ is finitely generated.

$$\exists C(\Gamma) \in \mathbb{R}, \ \ \mathcal{N}_{\Gamma \setminus \mathrm{AdS}^3}(\lambda_m) \geq \log_3 m - C(\Gamma)$$

 $\Gamma \curvearrowright \mathrm{AdS}^3$ is cocompact $\Rightarrow \Gamma$ is finitely generated

Corollary

M: compact anti-de Sitter mfd

$$\exists C(M) \in \mathbb{R}, \ \ \mathcal{N}_{\mathcal{M}}(\lambda_m) \geq \log_3 m - C(M)$$

Outline

Deformation of discontinuous groups

Deform the embedding $\Gamma \stackrel{\iota}{\hookrightarrow} G \in \operatorname{Hom}(\Gamma, G)$ (compact-open topology)

discontinuous gp. \neq discrete subgp.

Fact (Kobayashi '98, Klingler '96)

Assume $\Gamma \curvearrowright \mathrm{AdS}^3$ is cocompact.

• (Stability for proper discontinuity) \exists nbd. W of ι s.t. $\forall \varphi \in W$, $\varphi(\Gamma) \frown AdS^3$ is properly discontinuous

(Failure of local rigidity) the orbit G · ι by conjugation has no interior points.

Stable eigenvalues of the hyperbolic Laplacian

- \mathcal{U}_{Γ} : the set of nbds. W of $\iota \colon \Gamma \hookrightarrow G$ s.t. $\forall \varphi \in W$,
 - $\varphi(\Gamma) \curvearrowright AdS^3$ is properly discontinuous;
 - φ is injective.

Assume $\Gamma \curvearrowright \mathrm{AdS}^3$ is cocompact. Then $\mathcal{U}_{\Gamma} \neq \emptyset$ (stability).

Theorem (Kassel-Kobayashi, Adv. Math., 2016)

 $\exists m_0(\Gamma) \in \mathbb{R}, \ \exists W \in \mathcal{U}_{\Gamma},$

$$\bigcap_{\varphi \in W} \operatorname{Spec}_d(\Box_{\varphi(\Gamma) \setminus \operatorname{AdS}^3}) \supset \{\lambda_m \mid m \ge m_0(\Gamma)\}$$

 λ_m is a stable eigenvalue of $\Box_{\Gamma \setminus AdS^3}$ under any small deformation of Γ .

Multiplicities of stable eigenvalues

Assume $\Gamma \curvearrowright \mathrm{AdS}^3$ is cocompact.

Definition

$$\widetilde{\mathcal{N}}_{\Gamma \setminus \mathrm{AdS}^3}(\lambda) := \sup_{W \in \mathcal{U}_\Gamma} \min_{arphi \in W} \mathcal{N}_{arphi(\Gamma) \setminus \mathrm{AdS}^3}(\lambda)$$

$$\widetilde{\mathcal{N}}_{\Gamma \setminus \mathrm{AdS}^3}(\lambda)
eq \mathsf{0} \Leftrightarrow \lambda$$
 is a stable eigenvalue.

Main Theorem 2 (K.)

$$\widetilde{\mathcal{N}}_{\Gamma \setminus \mathrm{AdS}^3}(\lambda_m) \geq \log_3 m - C'(\Gamma)$$

Main Theorem 1: $\exists C(\Gamma) \in \mathbb{R}$, $\mathcal{N}_{\Gamma \setminus AdS^3}(\lambda_m) \ge \log_3 m - C(\Gamma)$

 $C(\Gamma)$ is continuous w.r.t. deformation of Γ

Kazuki Kannaka (RIKEN iTHEMS) Multiplicities of stable eigenvalues of compact

Outline

F-average of non-periodic eigenfunctions

 $\lambda_m = 4m(m-1) \ (m \in \mathbb{N})$

Generalized Poincaré series (Kassel-Kobayashi)

Assume $m \ge 2$.

$$\begin{array}{rcl} \mathcal{L}^{1}_{\lambda_{m}}(\mathrm{AdS}^{3})(\neq 0) & \to & \mathcal{L}^{1}_{\lambda_{m}}(\Gamma \backslash \mathrm{AdS}^{3}) \\ \psi_{m} & \mapsto & \psi_{m}^{\Gamma}(\Gamma x) := \sum_{\gamma \in \Gamma} \psi_{m}(\gamma x) \end{array}$$

Fact (Kassel-Kobayashi)

Assume Γ is finitely generated and ψ_m is SO(2) × SO(2)-finite.

$$\exists m_0(\Gamma) \in \mathbb{R}, \ \forall m \geq m_0(\Gamma), \ \psi_m^{\Gamma} \in L^2_{\lambda_m}(\Gamma \backslash \mathrm{AdS}^3)$$

Idea of the proof of Main Theorem 1

Main Theorem 1

Assume Γ is finitely generated.

$$\exists C(\Gamma) \in \mathbb{R}, \ \ \mathcal{N}_{\Gamma \setminus \mathrm{AdS}^3}(\lambda_m) \geq \log_3 m - C(\Gamma)$$

Find a family of $\psi_{m,j} \in L^1_{\lambda_m}(AdS^3)$ s.t. $\psi_{m,j}^{\Gamma}$ are linearly independent.

Idea

Examine the "behavior" of Γ -orbits and eigenfuncs at the origin and at ∞ .

Linear independence of generalized Poincaré series

 $\underbrace{\text{Step 1:}}_{|\psi_{m,j}(x)| = \begin{cases} O(t^j) & (t \to 0) \\ O(\exp(-2mt)) & (t \to \infty) \end{cases}} \text{w.r.t geodesic parameter } t \end{cases}$

··· it decays more rapidly at infinity than at the origin.

<u>Step 2</u>: prove the main term of the Γ -average $\psi_{m,j}^{\Gamma}(\Gamma x)$ is $\psi_{m,j}(x)$ for x close to the origin by examining the "behavior" of Γ -orbits:

Kassel-Kobayashi proved the non-vanishing of $\psi_{m,0}^{\Gamma}$.

Linear independence of generalized Poincaré series

<u>Step 2</u>: (the main term of $\psi_{m,j}^{\Gamma}(\Gamma x)$) = $\psi_{m,j}(x)$ for x close to the origin.

<u>Step 3</u>: prove the lin. indep. of $\psi_{m,j}^{\Gamma}$ $(j = 3, 3^2, \dots, 3^k)$ for $m \ge \exists m_{\Gamma}(k)$. This comes down to the following elementary lemma:

Lemma $\forall a = (a_1, \dots, a_k) \in \{\pm 1\}^k, \ \exists \theta_a \in \mathbb{R}, \ a_i \cos(3^i \theta_a) > 0 \ (i = 1, \dots, k).$

Example: k = 5, a = (1, 1, 1, -1, 1)

Choose $\theta_a = 2\pi/3^5$.	$3^i \theta_a$	$2\pi/81$	$2\pi/27$	$2\pi/9$	$2\pi/3$	2π	
Choose $v_a = 2\pi/3$.	sign of $\cos(3^i\theta_a)$	+	+	+	_	+	

By calculating $m_{\Gamma}(k)$,

Main Theorem 1: $\exists C(\Gamma) \in \mathbb{R}, \ \mathcal{N}_{\Gamma \setminus AdS^3}(\lambda_m) \ge \log_3 m - C(\Gamma)$

Idea of the proof of Main Theorem 2

Main Theorem 1 (Γ : finitely generated)

$$\exists C(\Gamma) \in \mathbb{R}, \ \ \mathcal{N}_{\Gamma \setminus \mathrm{AdS}^3}(\lambda_m) \geq \log_3 m - C(\Gamma)$$

Main Theorem 2 (multiplicities of stable eigenvalues, $\Gamma \curvearrowright AdS^3$: cocompact)

$$\widetilde{\mathcal{N}}_{\Gamma \setminus \mathrm{AdS}^3}(\lambda_m) \geq \log_3 m - C'(\Gamma)$$

For this, it suffices to show:

 $C(\Gamma)$ is continuous w.r.t. deformation of Γ

Idea

 $C(\Gamma)$ is defined by using the "behavior" of Γ -orbits at the origin and at infinity. \rightsquigarrow This depends continuously on Γ !