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differential symmetry breaking operators (DSBOs) ]

e Symmetry breaking operators:
G X = G~ C®(X,V)

U U T
G Y = G ~C®(Y,W)

Definition (T. Kobayashi)

differential symmetry breaking operators
= G'-intertwining differential operators T: C®(X,V) — C>®(Y, W)

Classify DSBOs with their explicit formulas in a specific setting. \

June 10, 2021 2/26




Outline of the talk

@ Setting and Main Problems
@ Main Results

© F-method (algebraic Fourier transform of Verma modules)

June 10, 2021 3/26



Outline of the talk

© Setting and Main Problems
@ Main Results

© F-method (algebraic Fourier transform of Verma modules)

June 10, 2021 3/26



Outline of the talk

@ Setting and Main Problems
© Main Results

© F-method (algebraic Fourier transform of Verma modules)

June 10, 2021 3/26



Outline of the talk

@ Setting and Main Problems
@ Main Results

© F-method (algebraic Fourier transform of Verma modules)

June 10, 2021 3/26



1. Setting and Main Problems

GAX = G C®(X,V)
U LT
G'AY = G~ CE(Y, W)

June 10, 2021 4/26



1. Setting and Main Problems

GAX = G C®(X,V)
U LT
G'AY = G~ CE(Y, W)

ST =X

June 10, 2021 4/26



1. Setting and Main Problems

GAX = G C®(X,V)
U LT
G'AY = G~ CE(Y, W)

ST =X

June 10, 2021 4/26



1. Setting and Main Problems

GAX = G C®(X,V)
U LT
G'AY = G~ CE(Y, W)

G := Conf(S") ~ ST =X

S l=Yy

June 10, 2021 4/26



1. Setting and Main Problems

GAX = G~ C®(X,V)
U LT
G'AY = G~ CE(Y, W)

G := Conf(S") ~ ST =X

S l=Yy
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1. Setting and Main Problems

GAX = G~ C®(X,V)
U 1T
G'AY = G ~C>®Y,W)

G := Conf(S") ~ ST =X

U

G':=Conf(S";S" 1)~ S" 1=V

C®(X,V) = E&I(S) (the space of i-forms on S")
Cx(Y, W) :=&(S" 1) (the space of j-forms on S"71)

Conf(S") : For the metric tensor g for S”, we have

0" 8oy = e, x)%ex (i € Diffeo(S"), x € S"),

where Q : a positive-valued function in C*°(G x S") (conformal factor)
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Conformal representation wf]'zg of G = Conf(S")

= (p)a = ©*a for p € G and a € E'(S™), J

June 10, 2021 5/26



()

u,0

of G = Conf(S")

Conformal representation w

i

=0 (p)a = o*a for p € G and o € £/(S"), J

There exists a conformal factor Q: C*°(G x §") — R such that
©*8o(x) = e, x)%8x (p € Conf(S"),x € S").

June 10, 2021 5/26



()

u,0

of G = Conf(S")

Conformal representation w

i

=0, (p)a = Qo )¥g*a for p € G and a € E1(S"), J

There exists a conformal factor Q: C*°(G x §") — R such that
©*8o(x) = e, x)%8x (p € Conf(S"),x € S").

June 10, 2021 5/26



Conformal representation w% of G = Conf(S")

)
o G~ ENSM) -

w(i)u’é(gp)a = or(¢)’Q(p 71, )“p*a for o € G and a € E/(S"), J

e ueC deZ/2z,

() 1 if o is orientation-preserving,
e or(p) =
7 —1 if v is orientation-reversing.

There exists a conformal factor Q: C*°(G x §") — R such that
©*8o(x) = e, x)%8x (p € Conf(S"),x € S").

June 10, 2021 5/26



Conformal representation w% of G = Conf(S")

)
o G~ ENSM) -

w(i)u’é(gp)a = or(¢)’Q(p 71, )“p*a for o € G and a € E/(S"), J

e ueC deZ/2z,

1 if o is orientation-preserving,
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There exists a conformal factor Q: C*°(G x §") — R such that
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Conformal representation w% of G = Conf(S")

O]

w

oG~ ENSM)

w(")u,(g(go)oz = or(p)°Q(p7L, ) Y0*a for o € G and o € E(S"), J

o uecC,deZ/2Z,

1 if o is orientation-preserving,
—1 if o is orientation-reversing.
()
Wy -
o G ~ &S (veC e€Z/27).

(w%, £(S")) :a p.s. representation of O(n+1,1)

(w\(,j,)g, £/(S"71)) : a p.s. representation of O(n,1)
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Main Problems:
(1) Classify (i,j,u,v,d,¢€) so that

Diff(£/(5")us, E(S" ) c) # {0}
(2) Determine
dimg Diffe/(€7(5™) w5, E(S™)y0)-
(3) Construct
D € Diffe/(E'(S")us, E(S" Y)yee)
explicitly.
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2. Main Results I: Classification (Problems (1) and (2))

Theorem (Kobayashi-K—Pevzner, [Lecture Notes in Math., 2016])
For (i,j,u,v,d,¢) with n > 3, TFAE:

(i) Diffe/(E'(5 s, E(S"1)v,e) # {0};
(ii) dimc Diffg/(E7(S")us, E(S" 1)) = 1;

(i) {j,n—=1—43n{i—=2,i—1,i,i +1} # 0 with some integral
conditions for u, v and parity conditions for d,e. (There are 12 cases.)

v
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Casej=i—1:
e 1< i<
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e =c=v—umod?2.
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2. Main Results I: Classification (Problems (1) and (2))

Theorem (Kobayashi—-K—Pevzner, [Lecture Notes in Math., 2016])
For (i,j,u,v,d,¢) with n > 3, TFAE:

(i) Differ(E7(S")us, E(S" M)v.e) # {0};
(ii) dimg¢ DiffG/(Ei(Sn)u75, gj(Sn_l)vyg) =1,

(i) ,n—1—j3n{i—2,i—1,i,i+ 1} # ( with some integral
conditions for u, v and parity conditions for d,e. (There are 12 cases.)

v

Case j=i+1:
e 1<i<n-2
e (u,v)=(0,0);
e y=c=0mod?2.

Notes: The Hodge star operator reduces all the casesto j =7 —1,i+ 1. J
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Main Results II: Explicit Formula (Problem (3))

Representation theory:
K-picture = N-picture

Conformal geometry:

Understand S" as the conformal compactification of the flat Riemannian
manifold R”.

gi(sn)u’é4}_6j(5n—1)v7E sn

Si(R") )(c:j(Rnfl) Rn

Di—i
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For u e C and a € N4, we set

D ;77 = Rest,,—g 0 (Df_jf;dd*aai + pDiHd* — qu.fLBi> J

with

. H . : n—1
@ p, q: appropriate constants, @ = u+1 — 5

o DM}, DML DY scalar-valued differential operators of order
a—2,a—1, a, respectively.
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DL:;i—l = ReStano o (nggldd*bai + pD;aLirlld* . qubai)

Xn

On the scalar-valued differential operators D%

© These are polynomials of

o Agn1 (the Laplacian for the hyperplane R"~1),

° Bix,, (the normal derivative with respect to the hyperplane R"~1)
with degree a.

@ The coefficients of them coincide with those for Gegenbauer
polynomials.
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Xn

On the scalar-valued differential operators D%

© These are polynomials of

o Agn1 (the Laplacian for the hyperplane R"~1),

° Bix,, (the normal derivative with respect to the hyperplane R"~1)
with degree a.

@ The coefficients of them coincide with those for Gegenbauer
polynomials.

15{,:;"_1 := renormalized operator such that 5LZI_1 # 0 for any (i, a, u). J
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Cases: j=i+1

For a € Ny,

=il
NI ] uy—"n

ea=1—-uwithu=0 (1<i<n-2)

@ a=1—uwithue -N(i=0)
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Cases: j=i+1

For a € Ny,

=il
~ . . 1 . u_n
D, ;" ;== Resty,—goD_, ? od, J

ea=1—-uwithu=0 (1<i<n-2)

@ a=1—uwithue —-N(i=0)

Theorem (Kobayashi—-K—Pevzner, [Lecture Notes in Math., 2016])

The following hold:

© The differential operator ZSL;”'ﬂ can be extended to S” and the
extended differential operator is an SBO.

@ Any differential SBO is proportional to D{,j;"il.
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Brief outline of the proofs of the main results

© Reformulate the main problems (conformal geometry) to ones in
representation theory.

@ Use the F-method (cf. [Kobayashi '13], [Kobayashi—Pevzner '16])

o The “F" for the F-method stands for the “Fourier transform”.
(The algebraic Fourier transform of the Verma modules)

o We enhanced the F-method to the vector-valued case.

© Interpret the results back in conformal geometry.
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© Reformulate the main problems (conformal geometry) to ones in
representation theory.

@ Use the F-method (cf. [Kobayashi '13], [Kobayashi—Pevzner '16])

o The “F" for the F-method stands for the “Fourier transform”.
(The algebraic Fourier transform of the Verma modules)

o We enhanced the F-method to the vector-valued case.

© Interpret the results back in conformal geometry.

Fischmann—Juhl-Somberg also independently classified the DSBOs for
differential forms for (SOp(n + 1,1), SOp(n, 1)) (AMS Memoirs, 2020).
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3. F-method (cf. Kobayashi—Pevzner, 2016)

Naive idea for the F-method
The F-method is a technique to classify and also construct

D € Diffg/(Vx, Wy)

by solving a system of PDEs via the algebraic Fourier transform.
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Duality theorem (Hom = Diff)

GOH=G/H=X
u U
G>H=G/H =Y

e V, W: f.d. representations of H and H’, resp.
] Vx =G xyV — X, WyZ:GIXHIW—>Y,

mdﬁ(Vv) = U(g) ®U(h) VV, mdé‘,(Wv) = U(g,) ®U(b/) W\/
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Duality theorem (Hom = Diff)

G D>DH=G/H=X
u u
G > H=G/H =Y

Remarks:
@ The duality theorem is known when G’ = G and H' = H = Borel,
especially in the setting of complex flag variaties.

cf.
o Kostant ('75)

o Harris—Jakobsen ('82)

Duality theorem (Kobayashi—Pevzner '16)

There is a natural linear isomorphism

DX_>yZ Homg/,H/(indg:(WV), mdf]‘(VV)) L> DifFG/(VX,WY).
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Steps for the F-method (Sol <~ Hom)

Preparation:
(1) Algebraic Fourier transform - of the Weyl algebra
(2) Lie algebra homomorphism d,,

(3) Algebraic Fourier transform F. of Verma modules

Then

(4) F-method (Sol <~ Hom)

Sol(PDE) «— Hom(Verma modules) — Diffg/(Vx, Wy)
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(1) Algebraic Fourier transform of the Weyl algebra

e V: f.d. vector space over C with dim¢ V =n
@ (z1,...,2y): coordinate for V

© D(V):=Clzi,...,2n, 7%, - -» 52): the Weyl algebra of V

’ Ozp

The algebraic Fourier transform of D(V/) is an algebra isomorphism

D(V) = D(VY), T T

induced by

June 10, 2021 16 / 26



(2) Lie algebra homomorphism d,,

o G : real reductive Lie group
U = G/P=X
P = MAN, : parabolic subgroup of G
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(2) Lie algebra homomorphism d,,

o G : real reductive Lie group

U
P = MAN, : parabolic subgroup of G

o g(R) =n_(R)+m(R) + a(R) + n(R)

o g =gR)®rC

— G/P =X

June 10, 2021
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(2) Lie algebra homomorphism d,,

o G : real reductive Lie group
U = G/P=X
P = MAN, : parabolic subgroup of G

o g(R) =n_(R)+m(R) + a(R) + n(R)
o g:=g(R)®rC
e (A, V): f.d. representation of P

e Vx =GxpV =X
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(2) Lie algebra homomorphism d,,

o G : real reductive Lie group
U = G/P=X
P = MAN, : parabolic subgroup of G

o g(R) =n_(R)+m(R) + a(R) + n(R)

g =g(R)®rC

(A, V): f.d. representation of P

Vx =G xpV =X

o my = IndS(\) ~ C®(X, Vx)
@ dmy: infinitesimal representation of )
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oen_(R)~N_— G/P=X
o C¥(X,Vx) — C*(n_(R))® V

dmy

egn C®n_(R)®V
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oen_(R)~N_— G/P=X
o C¥(X,Vx) — C*(n_(R))® V

dmy

egn C®n_(R)®V

dmy: g — D(n_) ® End(V) )
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oen_(R)~N_— G/P=X
o C¥(X,Vx) — C*(n_(R))® V

dmy

egn C®n_(R)®V

dmy: g — D(n_) ® End(V) ]
drx: g — D(ny) ® End(V) ]
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oen_(R)~N_— G/P=X
o C¥(X,Vx) — C*(n_(R))® V

dmy

egn C®n_(R)®V

dmy: g — D(n_) ® End(V) ]
drx: g — D(ny) ® End(V) ]

drA(C) ~ Pol(ny)® VY, Ceg ]
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dmy: g — D(ny) ® End(V)

—

In later applications, we use d7, :

pi=A ®Cy J

e (\Y, VV): contragredient representation to (), V) of P

@ Cp,= character of P defined as

p > | det(Ad(p): n:(R) = n(R))!
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@ Cp,= character of P defined as

p > | det(Ad(p): n:(R) = n(R))!

dr,: g — D(ny) ® End(VY) J
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dmy: g — D(ny) ® End(V)

—

In later applications, we use d7, :

pi=A ®Cy J

e (\Y, VV): contragredient representation to (), V) of P

@ Cp,= character of P defined as

p > | det(Ad(p): n:(R) = n(R))!

dr,: g — D(ny) ® End(VY) J
c77r\N(C) ~Polny)® VY, Ceg J
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(3) Algebraic Fourier transform F. of Verma modules

° JW\H(C) ~Polny)® VY, Ceg

) indg(Vv) = U(g) ®U(p) vV
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(3) Algebraic Fourier transform F. of Verma modules

° c77-r\u(C) ~Polny)® VY, Ceg

) indg(Vv) = U(g) ®U(p) vV

Theorem (Kobayashi—Pevzner '16)

There exists a (g, P)-module isomorphism:
Fe: ind3(VY) =5 Pol(ny) ® V¥

ue v — dm(u)(l®vY)

Definition
We call F. the algebraic Fourier transform of Verma modules.
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(3) Algebraic Fourier transform F. of Verma modules

° c77-r\u(C) ~Polny)® VY, Ceg

) indg(Vv) = U(g) ®U(p) vV

Theorem (Kobayashi—Pevzner '16)

There exists a (g, P)-module isomorphism:
Fe: ind3(VY) =5 Pol(ny) ® V¥

ue v — dm(u)(l®vY)

Definition

We call F. the algebraic Fourier transform of Verma modules.

Recall that

Sol(PDE) <~ Hom(Verma modules) — Diffg/(Vx, Wy) J




(4) F-method (Sol <~ Hom)

o G G . real reductive subgroup of G
U @]
P = LNy D> P =L'N'_ : parabolic subgroup of G’ s.t.

L'clL and N_CNy
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o Wy =G xpW—=Y :=G/P

o dr,(C)~Pol(n, )@ VY, Ceg

June 10, 2021 21/26



(4) F-method (Sol <~ Hom)

o G G . real reductive subgroup of G
U @]
P = LNy D> P =L'N'_ : parabolic subgroup of G’ s.t.

L'clL and N_CNy

e (v, W) : f.d. representation of P’

o Wy =G xpW—Y:=G/P

o dr,(C)~Pol(n, )@ VY, Ceg

Sol(ny; V, W) := {3 € Homy/(W",Pol(n.) @ V") : 1 satisfies

(dm(C)®idw) =0 forall C en,.}
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Sol(ny; V, W) := {¢h € Homp (WY, Pol(n.) @ V) : 9 satisfies

(dm,(C)®idw) =0 forall C e’}

Recall: There exists a (g, P)-module isomorphism

Fe: ind}(VY) = Pol(ny) ® VY.
p
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Sol(ny; V, W) := {¢h € Homp (WY, Pol(n.) @ V) : 9 satisfies

(dm,(C)®idw) =0 forall C e’}

Recall: There exists a (g, P)-module isomorphism

Fe: indd(VY) =5 Pol(ny) @ V. J

Theorem (Kobayashi—Pevzner '16)

There exists a natural isomorphism

Fe ® idy : Homg pr(ind%,(W"), ind§(V")) = Sol(ny; V, W).
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In summary we have the following:

Sol(ny; V, W)

Homg: p (indZ; (W), ind§ (V")) ~ Diffe/ (Vx, Wy).

Dx_y
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In summary we have the following:

Sol(ny; V, W)

Homg: p (indZ; (W), ind§ (V")) ~ Diffe/ (Vx, Wy).

Dx_y

Note: It is not necessary for ny to be abelian.
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The case: n is abelian.

Theorem (Kobayashi—Pevzner '16)

Suppose that n is abelian. Then there exists a natural isomorphism

Resty o Symb™!: Sol(n,; V, W) —= Diffg/(Vx, Wy).
Moreover the following diagram commutes:

Sol(ny; V, W)

/ wmb 1

Homg pr ( |ndg WY),ind3 (V")) Diff g/ (Vx, Wy)

Dx_y
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Thank you for your attention!
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