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Plancherel identity

Definition Fourier transform
Forf € C&°(G/H : x), P € P, 0 € (Mp)}, 45 and v € ipap, the Fourier transform

f(P,o,v) is the element of (VX ,.)* ® L3(K/Kp : op), defined by
HPeo))i= [ 10075, () (P —)0) 0
G/H
Remark: The map f — ?(P, o, v) intertwines L with idgy,x o) QTP o

Theorem (Plancherel)

[Ifl122 = Z Z / 1#(P, o, )17 dAp(v)

PEPy/~ o€ Mp

Strategy
Prove identity on the dense subspace C>°(G/H : x)x of K-finite functions. Technical
tool: sphericalization.

Let (7, V) be an arbitrary finite dimensional unitary representation of K. It suffices to
prove the result for functions in (C°(G/H : x) ® V).



T-spherical functions

Definition For X a left K-manifold:

C¥(r:X) = {f:X— V.| (k)= r(K)(x)}

(Cx(X) @ Vo)~

1

Likewise: C°(7: G/H : x) ~ (C(G/H : x) ® V- )K.

By triviality on tensor component V-, and by using the isometric identification
t: Voas — V2 4 Via inner product, Fourier transform becomes
®L2(1: K/Kp : op)

Co(r:G/H:ix) L% Vi g
L T ®eve
FP,ow N\ Vo,ds @ (Ho @ Vi )KP
J = (matrix coefficient)
Svepw L2 (pMp/MpnvHy~":(vx)p)
= -AZ.P.O'

Notation (HC): T +— /1 for composition of vertical maps (isometric).
Assumption: (to simplify exposition) pWW = {1} (automatic for group, Riemannian
symmetric , complex symmetric, Whittaker case). Then

Az po = L5 (7o : Mp/Mp N H : Xp).



Plancherel identity for spherical functions

Definition
Ao p = @Ue(MP);(\ dS.Ag,p,U
= L3 (7p : Mp/Mp N H:xp)

Lemma Ay p is finite dimensional

(gp: HC, ss: Oshima-Matsuki, wh: HC, Wallach).

Define: Fp: C(7: G/H: x) = C>®(ipap) ® Az p by
-FP(f)(l/) = @UE(MP)Q,ds'FP’U’D(f).

Plancherel identity is equivalent to

Ifz= > | i [ Fpf()|Z dXp(v),  (f€ C&(r:G/H: x)).
PePy/~"'p%



Normalized Eisenstein, Whittaker integrals

Definition
E°(P,+,v) € C®°(7: G/H : x) is defined by the following requirements.
> ltislineariny € Az p.

> Fory=y¢rwithT=nQ¢p e VX ® L2(75 : K/Kp : xp) itis given as the matrix
coefficient
EO(P,’(Z)TJ/,X) = <§077TP,U,17(X)]'0(P70" 17)77>

Remark In the Whittaker case, Harish-Chandra calls this the normalized Whittaker
integral, notation Wh(P, 1, v, X).

Lemma
(Fotw) ) = [ OB P —7.%) ok = (LE*(P,w, ~)).
G/H

Lemma E°(P,,v) depends meromorphically on v € pap.. For generic v it satisfies
the following differential equations

RZEO(Pv’(Z):V) = EO(PvﬁP(Zvy)wvy)v (263(9))

Here pu,(Z,v) € End(Az p) is polynomial in v, algebra homomorphism in Z.



C-functions, Maass-Selberg relations

Setting: P, Q € Py; put
W(paq | pap) := {¢ € Hom(pap,pag) | Iw € W(pa) : ¢ = Wl,ap}-

Asymptotic behavior There exist unique meromorphic functions
Cg‘P(s, -) i pape — Hom(Az p, Az o), for s € W(paq | pap), such that for generic

v € ipap and a — oo in pAf,

E°(P,4,v)(kam)~ % a* *0[Cqp(s,v)Yl(m), (m € Mp)
seW(paglpap)

Maass-Selberg relations Cg)lp(s, —ﬂ)*Cg)lP(s, v) indep! of Q, s.

(gp: HC, ss: vdB, Delorme-Carmona, wh: HC)
The definition of j°(P, o, v) is motivated by the following lemma.
Lemma CglP(Lu) =ida, p-

Preparation: We need that

A(l_’, P,o,v)* = A(P, P, o, —D).



Regularity
Lemma CglP(Lu) =ida, p-

Proof For Rev sufficiently dominant in pa,*;f, Langlands’ limit formula for matrix
coefficients of IndS(c © 7) gives (¥ = 7, T = n @ @), for a — oo in A} that
a vtPPEC(P,yp,v,am) = a VtPP (g, 71'/:>’(,71—,(ma)A(l_37 P, o, 17)71j(/_37 o,0)n)
= a "tPUAG-) el T, (ma)i(P o, P)n)
~  (ACIAC )T el(m), evef(P, o, )0 )
= (@(m),n) =p(m).

Corollary For P, Q € Py, s € W(paq | pap),
Caip(s, —)"Cqip(s,v) =ida, p-
In particular, Cglp(s, v) € U(Az p, Az q) for v imaginary.

Corollary The meromorphic functions v — Cg‘P(s, v) are regular on i paj,.

Remark This implies that E°(P, v, v) is regular for imaginary v, hence that j°(P, o, v)
is regular for such v.



Extension to the Schwartz space
Definition (HC Schwartz space)
C(G/H : x) is the space of f € C>°(G/H : x) such that
wNLuf € 12(G/H:x)  (u€ Ug),N € N).
Here w(kah) = (1 +|logal), fork € K,a€ A, h € H.

Let S(/paj) denote the usual space of Schwartz functions on the finite dimensional
real linear space /pap.

Theorem For each P € Py the map Fp is continuous linear

C(t:G/H:x) = S(ipap) ® Az p.

Proof for gp: HC, for ss: vdB, Carmona—Delorme, for wh: vdB.

The following strategy works in all cases.



Extension to the Schwartz space, Il

Theorem Fp: C(7: G/H: x) = S(ipap) ® Az p is cont® linear.

Strategy of Proof

(a) the generalized vector map j(P, o, v) is defined for Rev sufficiently P-dominant.
(b) derive a Bernstein-Sato type functional equation for j(P, o, v).

(c) use (b) to extend j(P, o, v) meromorphically. Singular set is a locally finite union of
real translates of root hyperplanes. Gives estimates for j(P, o, v) with uniformity
for Rev in translates of the cone of P-dominant elements.

(d) get moderate estimates for E°(P, o,v) on G/H which are of the type of uniformity
mentioned in (c).

(e) improve estimates with uniformity in v by repeated application of the differential
equations coming from 3(g) (inspired by Wallach’s technique for fixed v).

(f) improved estimates are uniformly tempered in the range v € ipap, hence lead to
estimates for ( Fpf, v ) = (f, E°(P,¢,v)).



Wave packets, Spherical Fourier inversion
Definition For P € Py define Wp : S(ipap) ® A2 p — C>(7: G/H : x) by

We()(x) = | E°(P,4(v),v,x) dAp(v).

ipaj

Theorem Wp maps continuously to C(7 : G/H : x).
(gp: HC, ss: vdB-C-D, wh: vdB).

Proof In all cases: a theory of the constant term with parameters: holomorphic version
of HC’s functions of type II(\). Missing argument in Whittaker case.

Lemma The composition WpFp depends on P through [P] € Py/ ~
(consequence of Maass-Selberg relations).

Lemma Fp and Wp are adjoint.
Since || Fpf||? = (f, WpFpf) the spherical Plancherel identity follows from:

Theorem: spherical Fourier inversion

I= > WpFp onC(r:G/H:x) (SFD.
PEPy/~

Final part of the talk: sketch of proof for both ss (vdB—S) and wh (vdB).



Cone supported functions

There exists an open polyhedral cone ,a™ such that (,A™ = exp(pa™))

Gy = KpATH = Kexp(pat)H  opendensein G.
Cases:
(a) Symmetric space: pAT is positive chamber for £+ (g°?, ,a).
(b) Group: pat =at x —a™.
(c) Whittaker: ,AT = A.

Notation
> C C pais the cone dual to pat(Ps); P minimalin Py.

> C(G/H : x) is the collection of f € C>°(G/H : x) such that there exists a
subset of ,a of the form Sy := ¢I((X — C) N pa™) such that suppf C K exp(Sx)H.

X ,,”l+ X gt
r
\<%>/ 5
X-¢ X-C
Spmm e, W rader

Remark Forss: C39(G/H : x) = C°(G/H). For wh: not the case.



Series expansions

Let P> = My Az N» be the minimal element in Py. Then My /My N H is compact, so

s Mr;(,ds = dim(o) < oo.

First step towards proof of (SIF): investigation of Wy 75 = Wp, Fp,, -

Recall:
Gy = KbAYH  opendensein G.

Theorem: There exists unique functions £ (v) € A3 , ® C(7: G+/H : x)
depending meromorphically on v € paf such that, for ) € Az = Az p,,

E(Ps,v,0)(x) = D> Ei(sv,)C(s,v)(¥),  (x € Gi/H).

seW(pa)

Ex(ra)p)=a""" > a Tm)(¥), (ac,Ah).

mMENT (pa)

Here C°(s,v) := nglpz(s, v), Tm(v) € A3, ® Vr, and To(v)(¥) = (e).



Contour shift a la Helgason (G/K)

Forfe C*(r: G/H: x), x € Gy,

WoFuf(x) = / S E4 (51, X)C° (s, ) Fo f(v) dA(v)
fpa* sew
= > | E(wx)C°(s,s ') Faf(sv) dA(v)
sew”ipa”

W[ Ew0F () drw)

|W| Ei (v, X)Fz (f)(v) dA(v) + residual integrals
ipa*—mn
= Tyf(x) + ResInt(f),
with n € pa* sufficiently P -dominant. These residues are picked up along finitely

many real translates of root hyperplanes. R acts by (Z, v) in the integrals on the
right. For suitable Zy € 3(g) the residues are cancelled so that

RZOnggf(X) = Fn’zo'777f(x)

By sending n — oo and applying a Paley-Wiener type estimation one concludes, for
feCx(r:Gy/H:x),

supp(f) C Kexp(Sx)H = suppAz WaFzf C Kexp(Sx)H.



Inversion by a shifted integral

Lemma The operator Rz Wiy F € End(Cg° (7 : G+/H : x)) is support preserving.
Proof: By combining above with symmetry of the operator.

Theorem Rz WxFs = Rz,.
Proof:
> The radial part of the operator on the left is essentially a differential operator D on
At.
p
» D commutes with the radial parts of all Z € 3(g).

> coefficients of D satisfy cofinite system of differential equations, which makes that
D is determined by its behavior at infinity.

> asymptotically, D ~ rad(Rz,), hence D = rad(Rz, ).

Theorem Forall f € C°(7 : G/H : x) and n sufficiently Pz-dominant, one has
f="Tny(f) on Gy.

Proof:
» Induction ~~ Reslnt(f) € C°(7: G/H : x), hence T,f € C°(r : G/H : x).
» By Paley-Wiener type estimation, 7,f € C55 (7 : G/H : x).
> s f—Tpf € CZ(T: G/H : x).
> f— T,fis annihilated by the analytic linear partial differential operator Rz, .
» By Holmgren uniqueness, f — 7,f = 0.



Identification of Residual integrals

Have found:
W, Fp, f = Tnf — ResInt(f), Tof =f.
Corollary
f = Wa Fo f + Reslnt(f).
One can organize the residue scheme so that it allows induction over M-components of
parabolic subgroups. By comparison of asymptotic behavior along A-components, one
can identify:
ResInt(f) = Z WpFpf
PEPy/~,P#Pz

This completes the proof of (SFI), hence of the Plancherel identity.
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