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Plancherel identity

Definition Fourier transform
For f ∈ C∞c (G/H : χ), P ∈ Pst, σ ∈ (MP)∧χ,ds and ν ∈ i pa∗P , the Fourier transform

f̂ (P, σ, ν) is the element of (Vχσ,ds)∗ ⊗ L2(K/KP : σP), defined by

f̂ (P, σ, ν)(η) :=

∫
G/H

f (x)πP,σ,−ν(x) j◦(P, σ,−ν)(η) dx

Remark: The map f 7→ f̂ (P, σ, ν) intertwines L with id(Vχ
σ,ds)∗ ⊗ πP,σ,ν .

Theorem (Plancherel)

‖f‖2
L2 =

∑
P∈Pst/∼

∑
σ∈(MP )∧

χ,ds

∫
i pa
∗
P

‖f̂ (P, σ, ν)‖2 dλP(ν)

Strategy

Prove identity on the dense subspace C∞(G/H : χ)K of K -finite functions. Technical
tool: sphericalization.

Let (τ,Vτ ) be an arbitrary finite dimensional unitary representation of K . It suffices to
prove the result for functions in (C∞c (G/H : χ)⊗ Vτ )K .



τ -spherical functions

Definition For X a left K -manifold:

C∞(τ : X) := {f : X → Vτ | f (kx) = τ(k)f (x)}
' (C∞(X)⊗ Vτ )K .

Likewise: C∞c (τ : G/H : χ) ' (C∞c (G/H : χ)⊗ Vτ )K .

By triviality on tensor component Vτ , and by using the isometric identification
ι : V̄σ,ds → V∗σ,ds, via inner product, Fourier transform becomes

C∞c (τ : G/H : χ)
·̂ (P,σ,ν)−→ V∗σ,ds ⊗ L2(τ : K/KP : σP)

↓ ι−1 ⊗ eve
FP,σ,ν ↘ V̄σ,ds ⊗ (Hσ ⊗ Vτ )KP

↓ ' (matrix coefficient)

⊕v∈PW L2
σ(τP :MP/MP∩vHv−1:(vχ)P )

=: A2,P,σ

Notation (HC): T 7→ ψT for composition of vertical maps (isometric).

Assumption: (to simplify exposition) PW = {1} (automatic for group, Riemannian
symmetric , complex symmetric, Whittaker case). Then

A2,P,σ = L2
σ(τP : MP/MP ∩ H : χP ).



Plancherel identity for spherical functions

Definition

A2,P := ⊕σ∈(MP )∧
χ,ds
A2,P,σ

= L2
ds(τP : MP/MP ∩ H : χP )

Lemma A2,P is finite dimensional

(gp: HC, ss: Oshima-Matsuki, wh: HC, Wallach).

Define: FP : C∞c (τ : G/H : χ)→ C∞(i pa∗P)⊗A2,P by

FP(f )(ν) := ⊕σ∈(MP )∧
χ,ds
FP,σ,ν(f ).

Plancherel identity is equivalent to

‖f‖2
L2 =

∑
P∈Pst/∼

∫
i pa
∗
P

‖FP f (ν)‖2 dλP(ν), (f ∈ C∞c (τ : G/H : χ)).



Normalized Eisenstein, Whittaker integrals

Definition
E◦(P, ψ, ν) ∈ C∞(τ : G/H : χ) is defined by the following requirements.
I It is linear in ψ ∈ A2,P .

I For ψ = ψT with T = η ⊗ ϕ ∈ Vχσ ⊗ L2(τP : K/KP : χP ) it is given as the matrix
coefficient

E◦(P, ψT , ν, x) = 〈ϕ, πP,σ,ν̄(x)j◦(P, σ, ν̄)η 〉.

Remark In the Whittaker case, Harish-Chandra calls this the normalized Whittaker
integral, notation Wh(P, ψ, ν, x).

Lemma

〈 FP f (ν), ψ 〉 =

∫
G/H

f (x)E◦(P, ψ,−ν̄, x) dx = 〈 f ,E◦(P, ψ,−ν̄) 〉.

Lemma E◦(P, ψ, ν) depends meromorphically on ν ∈ pa∗PC. For generic ν it satisfies
the following differential equations

RZ E◦(P, ψ, ν) = E◦(P, µ
P

(Z , ν)ψ, ν), (Z ∈ Z(g)).

Here µ
P

(Z , ν) ∈ End(A2,P) is polynomial in ν, algebra homomorphism in Z .



C-functions, Maass-Selberg relations

Setting: P,Q ∈ Pst; put

W (paQ | paP) := {ϕ ∈ Hom(paP , paQ) | ∃w ∈ W (pa) : ϕ = w |paP }.

Asymptotic behavior There exist unique meromorphic functions
C◦Q|P(s, · ) : pa∗PC → Hom(A2,P ,A2,Q), for s ∈ W (paQ | paP), such that for generic

ν ∈ i pa∗P and a→∞ in pA+
Q ,

E◦(P, ψ, ν)(kam) ∼
∑

s∈W (paQ |paP )

asν−ρQ [C◦Q|P(s, ν)ψ](m), (m ∈ MP)

Maass-Selberg relations C◦Q|P(s,−ν̄)∗C◦Q|P(s, ν) indept of Q, s.

(gp: HC, ss: vdB, Delorme-Carmona, wh: HC)

The definition of j◦(P, σ, ν) is motivated by the following lemma.

Lemma C◦P|P(1, ν) = idA2,P .

Preparation: We need that

A(P̄,P, σ, ν)∗ = A(P, P̄, σ,−ν̄).



Regularity

Lemma C◦P|P(1, ν) = idA2,P .

Proof For Reν sufficiently dominant in pa
∗+
P , Langlands’ limit formula for matrix

coefficients of IndG
P̄

(σ ⊗ ν̄) gives (ψ = ψT ,T = η ⊗ ϕ), for a→∞ in pA+
P that

a−ν+ρP E◦(P, ψ, ν, am) = a−ν+ρP 〈ϕ, πP,σ,ν̄(ma)A(P̄,P, σ, ν̄)−1j(P̄, σ, ν̄)η 〉

= a−ν+ρP 〈 [A(· · · )−1∗ϕ], πP̄,σ,ν̄(ma)j(P̄, σ, ν̄)η 〉

∼ 〈A(· · · )[A(· · · )−1∗ϕ](m), eve j(P̄, σ, ν̄)η 〉
= 〈ϕ(m), η 〉 = ψ(m).

Corollary For P,Q ∈ Pst, s ∈ W (paQ | paP),

C◦Q|P(s,−ν̄)∗C◦Q|P(s, ν) = idA2,P .

In particular, C◦Q|P(s, ν) ∈ U(A2,P ,A2,Q) for ν imaginary.

Corollary The meromorphic functions ν 7→ C◦Q|P(s, ν) are regular on i pa∗P .

Remark This implies that E◦(P, ψ, ν) is regular for imaginary ν, hence that j◦(P, σ, ν)
is regular for such ν.



Extension to the Schwartz space

Definition (HC Schwartz space)

C(G/H : χ) is the space of f ∈ C∞(G/H : χ) such that

wNLu f ∈ L2(G/H : χ) (u ∈ U(g),N ∈ N).

Here w(kah) = (1 + | log a|), for k ∈ K , a ∈ pA, h ∈ H.

Let S(i pa∗P) denote the usual space of Schwartz functions on the finite dimensional
real linear space i pa∗P .

Theorem For each P ∈ Pst the map FP is continuous linear

C(τ : G/H : χ)→ S(i pa
∗
P)⊗A2,P .

Proof for gp: HC, for ss: vdB, Carmona–Delorme, for wh: vdB.

The following strategy works in all cases.



Extension to the Schwartz space, II

Theorem FP : C(τ : G/H : χ)→ S(i pa∗P)⊗A2,P is conts linear.

Strategy of Proof

(a) the generalized vector map j(P̄, σ, ν) is defined for Reν sufficiently P-dominant.

(b) derive a Bernstein-Sato type functional equation for j(P̄, σ, ν).

(c) use (b) to extend j(P̄, σ, ν) meromorphically. Singular set is a locally finite union of
real translates of root hyperplanes. Gives estimates for j(P̄, σ, ν) with uniformity
for Reν in translates of the cone of P-dominant elements.

(d) get moderate estimates for E◦(P, σ, ν) on G/H which are of the type of uniformity
mentioned in (c).

(e) improve estimates with uniformity in ν by repeated application of the differential
equations coming from Z(g) (inspired by Wallach’s technique for fixed ν).

(f) improved estimates are uniformly tempered in the range ν ∈ i pa∗P , hence lead to
estimates for 〈 FP f , ψ 〉 = 〈 f ,E◦(P, ψ, ν) 〉.



Wave packets, Spherical Fourier inversion

Definition For P ∈ Pst defineWP : S(i pa∗P)⊗A2,P → C∞(τ : G/H : χ) by

WP(ψ)(x) =

∫
i pa
∗
P

E◦(P, ψ(ν), ν, x) dλP(ν).

Theorem WP maps continuously to C(τ : G/H : χ).

(gp: HC, ss: vdB–C–D, wh: vdB).

Proof In all cases: a theory of the constant term with parameters: holomorphic version
of HC’s functions of type II(λ). Missing argument in Whittaker case.

Lemma The compositionWPFP depends on P through [P] ∈ Pst/ ∼
(consequence of Maass-Selberg relations).

Lemma FP andWP are adjoint.

Since ‖FP f‖2 = 〈 f ,WPFP f 〉 the spherical Plancherel identity follows from:

Theorem: spherical Fourier inversion

I =
∑

P∈Pst/∼
WPFP on C(τ : G/H : χ) (SFI).

Final part of the talk: sketch of proof for both ss (vdB–S) and wh (vdB).



Cone supported functions

There exists an open polyhedral cone pa+ such that (pA+ = exp(pa+))

G+ := K pA+H = K exp(pa
+)H open dense in G.

Cases:

(a) Symmetric space: pA+ is positive chamber for Σ+(gσθ, pa).

(b) Group: pa+ = a+ ×−a+.

(c) Whittaker: pA+ = A.

Notation
I C ⊂ pa is the cone dual to pa+(P∅); P∅ minimal in Pst.

I C∞cs (G/H : χ) is the collection of f ∈ C∞(G/H : χ) such that there exists a
subset of pa of the form SX := cl((X − C) ∩ pa+) such that suppf ⊂ K exp(SX )H. 

I part I part
Sx 5

X C AC

symmetrie Whittaker

Remark For ss: C∞cs (G/H : χ) = C∞c (G/H). For wh: not the case.



Series expansions

Let P∅ = M∅A∅N∅ be the minimal element in Pst. Then M∅/M∅ ∩ H is compact, so
σ ∈ M̂χ

∅,ds =⇒ dim(σ) <∞.

First step towards proof of (SIF): investigation ofW∅F∅ =WP∅FP∅ .

Recall:
G+ = K pA+H open dense in G.

Theorem: There exists unique functions E+(ν) ∈ A∗2,∅ ⊗ C∞(τ : G+/H : χ)

depending meromorphically on ν ∈ pa∗C such that, for ψ ∈ A2,∅ = A2,P∅ ,

E(P∅, ψ, ν)(x) =
∑

s∈W (pa)

E+(sν, x)C◦(s, ν)(ψ), (x ∈ G+/H).

E+(ν, a)(ψ) = aν−ρ
∑

m∈NΣ+(pa)

a−mΓm(ν)(ψ), (a ∈ pA+).

Here C◦(s, ν) := C◦P∅|P∅ (s, ν), Γm(ν) ∈ A∗2,∅ ⊗ Vτ , and Γ0(ν)(ψ) = ψ(e).



Contour shift à la Helgason (G/K)

For f ∈ C∞c (τ : G/H : χ), x ∈ G+,

W∅F∅f (x) =

∫
i pa∗

∑
s∈W

E+(sν, x)C◦(s, ν)F∅f (ν) dλ(ν)

=
∑
s∈W

∫
i pa∗

E+(ν, x)C◦(s, s−1ν)F∅f (s−1ν) dλ(ν)

= |W |
∫

i pa∗
E+(ν, x)F∅(f )(ν) dλ(ν)

= |W |
∫

i pa∗−η
E+(ν, x)F∅(f )(ν) dλ(ν) + residual integrals

= Tη f (x) + ResInt(f ),

with η ∈ pa∗ sufficiently P∅-dominant. These residues are picked up along finitely
many real translates of root hyperplanes. RZ acts by µ(Z , ν) in the integrals on the
right. For suitable Z0 ∈ Z(g) the residues are cancelled so that

RZ0W∅F∅f (x) = RZ0Tη f (x)

By sending η →∞ and applying a Paley-Wiener type estimation one concludes, for
f ∈ C∞c (τ : G+/H : χ),

supp(f ) ⊂ K exp(SX )H =⇒ suppRZ0W∅F∅f ⊂ K exp(SX )H.



Inversion by a shifted integral

Lemma The operator RZ0W∅F∅ ∈ End(C∞c (τ : G+/H : χ)) is support preserving.

Proof: By combining above with symmetry of the operator.

Theorem RZ0W∅F∅ = RZ0 .

Proof:
I The radial part of the operator on the left is essentially a differential operator D on

pA+.

I D commutes with the radial parts of all Z ∈ Z(g).

I coefficients of D satisfy cofinite system of differential equations, which makes that
D is determined by its behavior at infinity.

I asymptotically, D ∼ rad(RZ0 ), hence D = rad(RZ0 ).

Theorem For all f ∈ C∞c (τ : G/H : χ) and η sufficiently P∅-dominant, one has

f = Tη(f ) on G+.
Proof:
I Induction ResInt(f ) ∈ C∞(τ : G/H : χ), hence Tη f ∈ C∞(τ : G/H : χ).

I By Paley-Wiener type estimation, Tη f ∈ C∞cs (τ : G/H : χ).

I  f − Tη f ∈ C∞cs (τ : G/H : χ).

I f − Tη f is annihilated by the analytic linear partial differential operator RZ0 .

I By Holmgren uniqueness, f − Tη f = 0.



Identification of Residual integrals

Have found:
WP∅FP∅ f = Tη f − ResInt(f ), Tη f = f .

Corollary
f =W∅F∅f + ResInt(f ).

One can organize the residue scheme so that it allows induction over M-components of
parabolic subgroups. By comparison of asymptotic behavior along A-components, one
can identify:

ResInt(f ) =
∑

P∈Pst/∼,P 6=P∅

WPFP f

This completes the proof of (SFI), hence of the Plancherel identity.
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