The Plancherel formula for real reductive groups II. The general case

Jan Frahm (Aarhus University)

AIM RTG – Language School "Representation Theory for C^* -Theorists" August 25, 2021

The Plancherel formula – strategy

- G linear connected semisimple group, \widehat{G} its unitary dual
- Plancherel formula for G equivalent to inversion formula for $f \in C_c^{\infty}(G)$:

$$f(e) = \int_{\widehat{G}} \Theta_{\pi}(f) d\mu(\pi), \qquad \Theta_{\pi}(f) = \int_{G} \Theta_{\pi}(x) f(x) dx.$$

- Θ_{π} locally integrable and analytic on G_{reg} , conjugation-invariant \rightarrow determined by its values on a maximal set of non-conjugate Cartan subalg. H_1, \ldots, H_r
- Weyl Integral Formula:

$$\Theta_{\pi}(f) = \sum_{j=1}^{r} \frac{1}{|W(G, H_j)|} \int_{H_j} \varepsilon_{H_j}(h) \overline{D_{H_j}(h)} \Theta_{\pi}(h) \cdot F_f^{H_j}(h) dh$$

Strategy: express the orbital integrals F_f^{H_j} in terms of Θ_π(f) (for sufficiently many π), then express f(e) in terms of (derivatives of) F_f^{H_j} at h = e

The case $SL(2, \mathbb{R})$ – revisited

• Two conjugacy classes of Cartan subgroups:

- $H = MA \rightsquigarrow$ minimal parabolic subgroup $P = MAN \rightsquigarrow$ unitary principal series $\pi_{\sigma,i\lambda}$
- $T = K \rightsquigarrow ??? \rightsquigarrow$ discrete series π_n^{\pm}
- Weyl integration formula + character formulas:

$$\Theta_n(f) = \int_T (\dots) F_f^T(t) dt + \int_H (\dots) F_f^H(h) dh$$

$$\Theta_{\pm,i\lambda}(f) = \int_H (\dots) F_f^H(h) dh$$

• Using Euclidean Fourier analysis on H and Fourier series on T + singularities of F_f^T \rightsquigarrow solve for $F_f^T(k_\theta)$ (or rather $\frac{d}{d\theta}\Big|_{\theta=0} F_f^T(k_\theta) = -2\pi i f(e)$)

First: Understand the discrete series!

Discrete series - existence

For a real reductive group G let $\widehat{G}_{ds} \subseteq \widehat{G}$ denote the equivalence classes of discrete series.

Questions

- When is $\widehat{G}_{ds} \neq \emptyset$?
- How to parameterize \widehat{G}_{ds} ?
- Character formulas?

Let G be a connected semisimple Lie group with finite center, $K \subseteq G$ a maximal compact subgroup and $T \subseteq K$ a maximal torus (= Cartan subgroup).

Theorem (Harish-Chandra)

The following are equivalent:

•
$$\widehat{G}_{\mathsf{ds}} \neq \emptyset$$

• T is a Cartan subgroup of G

•
$$rank(G) = rank(K)$$

Examples: $G = SL(n, \mathbb{R})$ has rank n-1, K = SO(n) has rank $\lfloor \frac{n}{2} \rfloor$, so $\widehat{G}_{ds} \neq \emptyset \Leftrightarrow n = 2$

Discrete series – parameterization

- Assume that G is linear connected semisimple and that a maximal torus $T \subseteq K$ is also a Cartan subgroup for $G. \Rightarrow \widehat{G}_{ds} \neq \emptyset$
- Let $\Sigma_{\mathcal{K}} = \Sigma(\mathfrak{k}_{\mathbb{C}}, \mathfrak{t}_{\mathbb{C}}) \subseteq \Sigma_{\mathcal{G}} = \Sigma(\mathfrak{g}_{\mathbb{C}}, \mathfrak{t}_{\mathbb{C}})$ and denote by $W_{\mathcal{K}}$ the Weyl group of $\Sigma_{\mathcal{K}}$

Theorem

For every $\lambda \in (i\mathfrak{t})^*$ (Harish-Chandra parameter) satisfying

- (non-singular) $\langle \lambda, \alpha \rangle \neq 0$ for all $\alpha \in \Delta_G$, $\rightsquigarrow \Sigma_G^+ = \{ \alpha \in \Sigma_G : \langle \lambda, \alpha \rangle > 0 \}, \Sigma_K^+ = \Sigma_G^+ \cap \Sigma_K, \rho_G, \rho_K$ half-sums of positive roots
- (analytically integral) $\lambda +
 ho_G$ integrates to a character of T

there exists a unique discrete series representation π_{λ} with lowest *K*-type of highest weight $\Lambda = \lambda + \rho_G - 2\rho_K$ with respect to Σ_K^+ (*Blattner parameter*). Moreover, $\pi_{\lambda} \simeq \pi_{\mu}$ iff $\lambda = w\mu$ for some $w \in W_K$. This construction exhausts \hat{G}_{ds} .

Discrete series – example $G = \text{Sp}(2, \mathbb{R})$

Let $G = \text{Sp}(2, \mathbb{R})$, K = U(2), $T = U(1) \times U(1)$, then

- $\Sigma_G = \{\pm 2\varepsilon_1, \pm 2\varepsilon_2, \pm \varepsilon_1 \pm \varepsilon_2\}$ $\Sigma_K = \{\pm (\varepsilon_1 - \varepsilon_2)\}, W_K = \mathbb{Z}_2,$
- $\lambda = \lambda_1 \varepsilon_1 + \lambda_2 \varepsilon_2$ non-singular $\Leftrightarrow \lambda_1, \lambda_2, \lambda_1 \pm \lambda_2 \neq 0$
- $\lambda +
 ho_{\mathcal{G}}$ analytically integral $\Leftrightarrow \lambda_1, \lambda_2 \in \mathbb{Z}$
- 4 families of discrete series:
 - holomorphic discrete series
 - antiholomorphic discrete series
 - 2 "large" discrete series

Discrete series – characters

General: $\pi \in \widehat{G} \rightsquigarrow \Theta_{\pi} \in \mathcal{D}'(G)$ invariant eigendistribution, i.e.

- conjugation-invariant
- $\mathcal{Z}(\mathfrak{g}_{\mathbb{C}}) \subseteq \mathcal{U}(\mathfrak{g}_{\mathbb{C}})$ acts by scalars.

Theorem (Harish-Chandra)

Let $\Theta \in \mathcal{D}'(G)$ be an invariant eigendistribution, then Θ is locally integrable on G and analytic on G^{reg} . On each connected component of H^{reg} , H a Cartan subgroup, it can be written as

$$\Theta(h) = rac{ au_H(h)}{D_H(h)},$$

with $D_H(h)$ the Weyl denominator (given in terms of $\Sigma(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$) and

$$au_H(h\exp(X)) = \sum_{w\in W(\mathfrak{g}_\mathbb{C},\mathfrak{h}_\mathbb{C})} p_w(X) e^{(w\lambda)(X)} \qquad (X\in\mathfrak{h}),$$

where the p_w are polynomials on \mathfrak{h} and λ is related to the eigenvalues of $\mathcal{Z}(\mathfrak{g}_{\mathbb{C}})$ (\leftrightarrow inf. char. of π for $\Theta = \Theta_{\pi}$). Moreover, $\varepsilon_H(h)\tau_H(h)$ is continuous on H ($\varepsilon_H(h) \in \{\pm 1\}$ in terms of roots).

Discrete series – characters

Let Θ_{λ} denote the character of the discrete series representation π_{λ} , $\lambda \in (i\mathfrak{t})^*$.

Theorem

On the compact Cartan T, the numerator au_T of Θ_λ is given by

$$\tau_T(\exp(X)) = (-1)^{\frac{1}{2}\dim(G/K)} \sum_{w \in W_K} \det(w) e^{(w\lambda)(X)} \qquad (X \in \mathfrak{t})$$

Proof: Show that Θ_{λ} agrees with the character of $\pi_{\lambda}|_{K}$ which can be expressed in terms of the *K*-types of π_{λ} . Use the information about the lowest *K*-type of π_{λ} and Weyl group action.

Example $G = \mathsf{SL}(2,\mathbb{R})$

$$T = K = SO(2) \subseteq G \text{ and } \Sigma_G = \{\pm \alpha\}, \ \Sigma_K = \emptyset, \ W_K = \{e\}$$

$$\lambda = \frac{n}{2}\alpha \text{ non-singular and } \lambda + \rho_G \text{ analytically integral} \Leftrightarrow n \in \mathbb{Z} \setminus \{0\}$$

$$D_T(k_\theta) = sgn(n)(e^{i\theta} - e^{-i\theta}), \quad \tau_T(k_\theta) = -e^{in\theta} \qquad \Rightarrow \Theta_n(k_\theta) = -sgn(n)\frac{e^{in\theta}}{e^{i\theta} - e^{-i\theta}}.$$

Now: Contribution of an arbitrary Cartan subgroup $H \subseteq G$ to $L^2(G)$

AARHUS UNIVERSITET DEPARTMENT OF MATHEMATIC:

Cuspidal parabolic subgroups

Let *H* be a θ -stable Cartan subgroup, then H = TA with $T = H \cap K$ and $A = H \cap \exp \mathfrak{p}$. \rightsquigarrow parabolic subgroup P = MAN with $T \subseteq M$ compact Cartan subgroup $\rightsquigarrow M$ has discrete series

Definition (cuspidal parabolic subgroup)

A parabolic subgroup $P = MAN \subseteq G$ is called *cuspidal* if M has discrete series.

{cuspidal parabolic subgroups}/ $\sim ~~ \longleftrightarrow ~~ \{ {\rm Cartan \ subalgebras} \} / \sim$

Examples

- minimal parabolic subgroups \leftrightarrow Cartan subalgebras H = TA with dim A maximal
- G = MAN with M = G, $A = N = \{e\}$ iff G has discrete series $\leftrightarrow T \subseteq K \subseteq G$ max. torus
- For $G = GL(n, \mathbb{R})$: parabolic subgroups P = MAN, $MA \simeq GL(n_1, \mathbb{R}) \times \ldots \times GL(n_r, \mathbb{R})$. P cuspidal $\Leftrightarrow n_1, \ldots, n_r \in \{1, 2\}$

Principal series representations

Let $P = MAN \subseteq G$ be a cuspidal parabolic subgroup. For $\sigma \in \widehat{M}_{ds}$ and $\lambda \in \mathfrak{a}^*$ we form the unitary principal series representation

$$\pi_{\sigma,i\lambda} = \mathsf{Ind}_P^G(\sigma \otimes e^{i\lambda} \otimes 1).$$

Note: Since \widehat{M}_{ds} is parameterized by non-singular characters of a compact Cartan $T \subseteq M$ and $e^{i\lambda}$ runs through the unitary characters of A, the representations $\pi_{\sigma,i\lambda}$ are parameterized by "non-singular" unitary characters of the corresponding Cartan subgroup $H = TA \simeq T \times A$.

 \rightsquigarrow Langlands classification

Next: Character $\Theta_{\sigma,i\lambda}$ of $\pi_{\sigma,i\lambda}$

Principal series characters - vanishing

Lemma

Let H = TA be a Cartan subgroup of G with corresponding cuspidal parabolic subgroup P = MAN and let $\Theta_{\sigma,i\lambda}$ be the character of the principal series representation $\pi_{\sigma,i\lambda}$ induced from $\sigma \in \widehat{M}_{ds}$ and $\lambda \in \mathfrak{a}^*$. If a Cartan subgroup $H' \subseteq G$ is not conjugate (within G) to a Cartan subgroup of MA, then

$$\Theta_{\sigma,i\lambda}|_{(H'_{\mathrm{reg}})^G}=0.$$

 \rightsquigarrow partial ordering on the conjugacy classes of Cartan subgroups:

 $H_1 \leq H_2$: \Leftrightarrow H_1 conjugate to a subgroup of M_2A_2 ,

where $M_2A_2N_2$ is a parabolic subgroup associated to $H_2 = T_2A_2$.

Let H_1, \ldots, H_r representatives of the conjugacy classes of Cartan subgroups of G, ordered in such a way that $H_i \leq H_j$ implies $i \leq j$. \rightsquigarrow By the Weyl Integral Formula: $\Theta_{\sigma,i\lambda}^{P_j}(f) = \int_{H_1}(\ldots)F_f^{H_1}(h) dh + \cdots + \int_{H_i}(\ldots)F_f^{H_j}(h) dh$

 \rightsquigarrow triangular system expressing $\Theta_{\sigma,i\lambda}^{P_j}(f)$ in terms of $F_f^{H_i}$

Example:
$$G = \text{Sp}(2, \mathbb{R})$$

Four conjugacy classes of Cartan subgroups/cuspidal parabolic subgroups:

- $T \simeq U(1) \times U(1) \rightsquigarrow G$
- $H_1 \simeq U(1) \times \mathbb{R}^{\times} \rightsquigarrow P_1 = M_1 A_1 N_1$ with $M_1 = O(1) \times Sp(1, \mathbb{R})$, $N_1 = \mathbb{C} \ltimes \mathbb{R}$ Heisenberg
- $H_2 \simeq \mathbb{C}^{\times} \rightsquigarrow P_2 = M_2 A_2 N_2$ with $M_2 A_2 = \operatorname{GL}(2, \mathbb{R}), N_2 = \operatorname{Sym}(2, \mathbb{R})$
- $H = MA \simeq \mathbb{R}^{\times} \times \mathbb{R}^{\times} \rightsquigarrow P = MAN$ minimal, $MA = GL(1, \mathbb{R}) \times GL(1, \mathbb{R})$

 $\rightsquigarrow H \leq H_1, H_2 \leq T$

$$\begin{split} \Theta^{H}(f) &= \int_{H} (...) F_{f}^{H}, \\ \Theta^{H_{1}}(f) &= \int_{H} (...) F_{f}^{H} + \int_{H_{1}} (...) F_{f}^{H_{1}} \\ \Theta^{H_{2}}(f) &= \int_{H} (...) F_{f}^{H} + \int_{H_{1}} (...) F_{f}^{H_{1}} + \int_{H_{2}} (...) F_{f}^{H_{2}} \\ \Theta^{T}(f) &= \int_{H} (...) F_{f}^{H} + \int_{H_{1}} (...) F_{f}^{H_{1}} + \int_{H_{2}} (...) F_{f}^{H_{2}} + \int_{T} (...) F_{f}^{T} \end{split}$$

 \rightsquigarrow What is (...)?

Principal series characters - reduction

The character $\Theta_{\sigma,i\lambda}$ of $\pi_{\sigma,i\lambda}$ can be expressed in terms of λ and the character Θ_{σ} of σ :

Induced Characters

For $f \in C^{\infty}_{c}(G)$ let

$$f^{(P)}(ma) = a^{
ho} \int_{\mathcal{K}} \int_{N} f(kmank^{-1}) \, dk \, dn,$$

then

•
$$\Theta_{\sigma,i\lambda}(f) = (\Theta_{\sigma} \otimes e^{i\lambda})(f^{(P)})$$

•
$$e^{\rho H(h)}\xi_{-\delta}(h)F_f^{G/H}(h) = \xi_{-\delta_M}(h)F_{f^{(P)}}^{MA/H}(h)$$

 \rightsquigarrow reduction arguments from *G* to *MA* possible

 \rightsquigarrow formulate (and show) all statements for G in Harish-Chandra class

Recovering f(e) from $F_f^H(h)$

Examples

•
$$G = SL(2, \mathbb{R})$$
: $f(e) = const \times \lim_{\theta \to 0} \frac{d}{d\theta} F_f^T(k_\theta)$ and $\frac{d}{dt}\Big|_{t=0} F_f^H(a_t) = 0$.

•
$$G = \mathsf{SL}(2,\mathbb{C})$$
: $f(e) = \operatorname{const} \times \partial(\overline{\alpha})\partial(\alpha)F_f^H(e)$, where $\Sigma^+(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}}) = \{\alpha,\overline{\alpha}\}$

For a Cartan subgroup H with Lie algebra \mathfrak{h} let $\Sigma_G^+ \subseteq \Sigma_G = \Sigma(\mathfrak{g}_{\mathbb{C}}, \mathfrak{h}_{\mathbb{C}})$ a positive system within the root system of $(\mathfrak{g}_{\mathbb{C}}, \mathfrak{h}_{\mathbb{C}})$. For each $\alpha \in \Sigma_G^+$ let

$$\partial(\alpha)F(h) = \left.\frac{d}{dt}\right|_{t=0} F(h\exp(t\operatorname{Re} H_{\alpha})) + i\left.\frac{d}{dt}\right|_{t=0} F(h\exp(t\operatorname{Im} H_{\alpha})),$$

where $H_{\alpha} \in \mathfrak{h}_{\mathbb{C}}$ corresponds to $\alpha \in \mathfrak{h}_{\mathbb{C}}^{*}$ via the Killing form. Let

$$\partial(\omega_H) = \prod_{lpha\in\Sigma_G^+}\partial(lpha).$$

Theorem

$$\partial(\omega_H)F_f^H(e) = c_Hf(e)$$

with $c_H = 0$ unless H = TA with dim T maximal, and $c_H \neq 0$ in that case.

Properties of F_f^H

Let $f \in C_c^{\infty}(G)$ and $H \subseteq G$ a Cartan subgroup.

- $F_f^H \in C^{\infty}(H_{reg})$, supp $F_f^H \subseteq H$ compact
- $F_f^H \in C^{\infty}(H^*_{\text{reg}})$, where $H^*_{\text{reg}} = \{h \in H : h^{\alpha} \neq 1 \text{ for all non-cpt. imaginary } \alpha \in \Sigma_G\} \supseteq H_{\text{reg}}$
- F_f^H extends to a smooth function on the closure of each connected component of H_{reg}^* .
- If two Cartan subgroups H_T and H_A satisfy $\mathfrak{h}_T = \mathfrak{h}' \oplus \mathfrak{t}$ and $\mathfrak{h}_A = \mathfrak{h}' \oplus \mathfrak{a}$ with $\mathfrak{t}, \mathfrak{a} \subseteq \mathfrak{sl}(2, \mathbb{R}) \subseteq \mathfrak{g}$ as before, then for each "semiregular" element $h_0 \in H_T \cap H_A$:

$$F_f^{H_T}(h_0)^+ - F_f^{H_T}(h_0)^- = \operatorname{const} \times F_f^{H_A}(h_0).$$

Strategy (very rough)

- Let H_1, \ldots, H_r be representatives of the conjugacy classes of Cartan subgroups of G and P_1, \ldots, P_r corresponding cuspidal parabolic subgroups. Assume H_1 is maximally compact.
- Apply the Weyl Integration Formula and the character formulas for $\Theta_{\sigma,i\lambda}^{P_1}|_{H_i} = \frac{\tau_{H_i}}{D_{H_i}}$ to write

$$\Theta_{\sigma,i\lambda}^{P_1}(f) = \sum_{i=1}^r \pm \int_{H_i} \varepsilon_{H_i}(h) \tau_{H_i}(h) F_f^{H_i}(h) \, dh$$

Use ∂(ω_{H_i})[ε_{H_i}τ_{H_i}] = p(σ, iλ)[ε_{H_i}τ_{H_i}] in each of the terms and integrate by parts, taking into account the jumps of F^{H_i}_f → total effect of discontinuities drops out

$$\rightsquigarrow p(\sigma, i\lambda)\Theta_{\sigma, i\lambda}^{P_1}(f) = \sum_{i=1}^r \pm \int_{H_i} \varepsilon_{H_i}(h) \tau_{H_i}(h) \cdot \partial(\omega_{H_i}) F_f^{H_i}(h) \, dh$$

- Use character formula for $\varepsilon_{H_1}(h)\tau_{H_1}(h)$ and Fourier analysis on $H_1 = T_1 \times A_1$ to sum and integrate over σ and λ and the fact that $\partial(\omega_{H_1})F_f^{H_1}(e) = c_{H_1}f(e)$ to eliminate $F_f^{H_1}$
- Continue with H_2 , using the reduction from F_f^{G/H_2} to $F_f^{M_2A_2/H_2}$...

The Plancherel formula

Plancherel formula

Let G be a linear connected real reductive group, then

$$L^2(G)\simeq igoplus_{\substack{P=MAN\ { ext{cuspidal}}/\sim}} igoplus_{\sigma\in\widehat{M}_{ds}} \int_{\mathfrak{a}^*_+} \pi_{\sigma,i\lambda}\otimes \pi^*_{\sigma,i\lambda}\,d\lambda.$$

More precisely, there exist (explicitly computable elementary analytic) functions $q_P(\sigma, \lambda)$ such that

$$f(e) = \sum_{\substack{P = MAN \\ cuspidal/\sim}} \sum_{\sigma \in \widehat{M}_{ds}} \int_{\mathfrak{a}^*} \Theta_{\sigma,i\lambda}(f) \, q_P(\sigma,\lambda) \, d\lambda \qquad (f \in C^\infty_c(G)).$$

Remark: The inversion formula actually holds for all f in Harish-Chandra's Schwartz space C(G) and all ingredients ($\Theta_{\pi}(f)$, F_{f}^{H} , $f^{(P)}$, ...) are defined for $f \in C(G)$. \rightarrow necessary in order to apply Θ_{π} to matrix coefficients of discrete series

Application: Riemannian symmetric spaces

$$X = G/K \rightsquigarrow L^{2}(X) \simeq L^{2}(G)^{K} \simeq \bigoplus_{\substack{P = MAN \\ \text{cuspidal}/\sim}} \bigoplus_{\sigma \in \widehat{M}_{ds}} \int_{\mathfrak{a}_{+}^{*}} \pi_{\sigma,i\lambda} \otimes (\pi_{\sigma,i\lambda}^{*})^{K}, d\lambda$$

 $\textit{Observation: } \pi^{\textit{K}}_{\sigma,i\lambda} \neq \{0\} \Leftrightarrow \textit{P} = \textit{P}_{\min} \textit{ and } \sigma = 1 \textit{ trivial representation}$

$$L^2(G/\mathcal{K})\simeq \int_{\mathfrak{a}^*_+}\pi_{\mathbf{1},i\lambda}\,d\lambda \qquad ext{and}\qquad f(e)=\int_{\mathfrak{a}^*}\Theta_{\mathbf{1},i\lambda}(f)rac{d\lambda}{|c(\lambda)|^2},$$

where

$$c(\lambda) = c_0 \prod_{\alpha \in \Sigma_{G,0}^+} \frac{2^{-i\frac{\langle \lambda, \alpha \rangle}{\langle \alpha, \alpha \rangle}} \Gamma(i\frac{\langle \lambda, \alpha \rangle}{\langle \alpha, \alpha \rangle})}{\Gamma(\frac{1}{2}(\frac{1}{2}m_{\alpha} + 1 + i\frac{\langle \lambda, \alpha \rangle}{\langle \alpha, \alpha \rangle})) \Gamma(\frac{1}{2}(\frac{1}{2}m_{\alpha} + m_{2\alpha} + i\frac{\langle \lambda, \alpha \rangle}{\langle \alpha, \alpha \rangle}))}$$

Note: $L^2(G/H) \simeq L^2(G)^H$ is not true for H non-compact! \rightsquigarrow ask Erik van den Ban!

Extra: explicit realization of representations

The construction of $\pi_{\sigma,i\lambda} = \operatorname{Ind}_P^G(\sigma \otimes e^{i\lambda} \otimes 1)$ from σ is very explicit (e.g. on L^2 -sections of a Hermitian vector bundle $\mathcal{V}_{\sigma,i\lambda}$ over G/P).

Question

How can discrete series representations be constructed?

There are different constructions of the discrete series:

- (G Hermitian, i.e. ℓ = u(1) ⊕ ℓ') The (anti-)holomorphic discrete series representations can be realized on Hilbert spaces of (anti-)holomorphic functions on the bounded symmetric domain G/K on which G acts (anti-)holomorphically.
 Example: SU(1, 1) acting on D = {z ∈ C : |z| < 1}
- (Langlands, Schmid) Dolbeaut cohomology $H^k(G/T, \mathcal{L}_{\lambda-\rho})$ of line bundles over G/T
- (Zuckerman) Derived functor modules $A_{\mathfrak{q}}(\lambda)$
- (Parthasarathy, Atiyah–Schmid) Kernel of a Dirac operator on a vector bundle over G/K

References

- Peter Hochs, *The discrete series of semisimple groups*, September 2019, Lecture notes, available at https://www.math.ru.nl/~hochs/Discrete_series.pdf.
- i _____, Harish-Chandra's Plancherel formula for SL(2, ℝ), September 2019, Lecture notes, available at https://www.math.ru.nl/~hochs/HC_Plancherel_formula.pdf.
- Anthony W. Knapp, *Representation theory of semisimple groups. An overview based on examples*, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986.
- Tomasz Przebinda, *Plancherel formula for a real reductive group*, July/August 2019, Lecture notes, available at https://tomasz.przebinda.com/Xiamen_Lectures_2019%20-revised6.pdf.

