
The Plancherel formula for real reductive groups
I. Examples

Jan Frahm (Aarhus University)

AIM RTG – Language School “Representation Theory for C∗-Theorists”
August 23, 2021

AARHUS
UNIVERSITET
DEPARTMENT OF MATHEMATICS

LANGUAGE SCHOOL
AIM RTG

JAN FRAHM
AUGUST 23, 2021



General theory

Let G be a real reductive Lie group (e.g. SL(n;R), GL(n;R), Sp(n;R), O(p; q)).
Let dx denote a Haar measure on G, then G × G acts unitarily on L2(G) = L2(G; dx) by

[(g; h) · f ](x) = f (g−1xh) (g; h; x ∈ G):

Question
How does L2(G) decompose into irreducible representations of G × G?

• Denote by bG the unitary dual of G endowed with the Fell topology.
• Generalized Fourier coefficients: For f ∈ C∞c (G) and (ı;Hı) ∈ bG:

ı(f ) =

Z
G
f (x)ı(x) dx : Hı →Hı:

Then ı(f ) is trace class, in particular ı(f ) ∈ HS(Hı) ' Hı ⊗H∗ı, and
ı((g; h) · f ) = ı(g) ◦ ı(f ) ◦ ı(h)−1

 f 7→ ı(f ) intertwines the actions of G × G on C∞c (G) and ı ⊗ ı∗.
• Fourier transform: C∞c (G)→

Q
ı∈bG HS(Hı); f 7→ bf , where bf (ı) = ı(f )
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General theory

Theorem

There exists a unique Radon measure — on bG such that

‖f ‖2L2(G) =

Z
bG ‖ı(f )‖2HS(Hı) d—(ı) (f ∈ C∞c (G)):

In other words, the unitary representation of G ×G on L2(G) decomposes into the direct integral

L2(G) '
Z
bGHı ⊗H∗ı d—(ı):

Goal
Determine the Plancherel measure — explicitly.  Harish-Chandra ’76

Assumptions on G: Harish-Chandra class (closed under passing to Levi subgroups)

(Some results in this talk are for simplicity stated under stronger assumptions.)
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Why ı ⊗ ı∗? Why multiplicity one?

A general irreducible unitary representation of G × G is of the form ı ⊗ fi with ı; fi ∈ bG.
Question
Why do only representations of the form ı ⊗ ı∗ occur in L2(G)? Why with multiplicity one?

• Every embedding « : ı∞ ⊗ fi∞ ,→ C∞(G) gives rise to ” = ‹e ◦ « ∈ Hom(ı∞ ⊗ fi∞;C):

”(v ⊗ w) = «(v ⊗ w)(e):

• If « is G × G-equivariant, the embedding is given by taking matrix coefficients:

«(v ⊗ w)(g) = ”(ı(g)−1v ⊗ w) = ”(v ⊗ fi(g)w)

and hence
” ∈ HomG(ı∞ ⊗ fi∞;C) 6= {0} ı;fi irred.⇔ fi ' ı∗:

• dimHomG(ı∞ ⊗ ı∗;∞;C) = 1 (Schur’s Lemma) ⇒ multiplicity one
• Alternative interpretation: G ' (G × G)=diag(G) and ” ∈ (ı ⊗ fi)−∞;diag(G)

 generalization to homogeneous spaces G=H and Π ∈ bG with ” ∈ Π
−∞;H
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Examples

1 G compact: Peter–Weyl TheoremZ
G
|f (x)|2 dx =

X
[ı]∈bG dı‖ı(f )‖2HS(Hı) with dı = dimHı:

Special case: G = T Fourier series
2 G = R: Fourier transform Z

R
|f (x)|2 dx =

Z
R
|bf (‰)|2 d‰:

3 Today: G = SL(2;R); SL(2;C)
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Characters

Lemma
The inversion formula implies the Plancherel formula:

h(e) =

Z
bG tr(ı(h)) d—(ı) (h ∈ C∞c (G)) ⇒ ‖f ‖2L2(G) =

Z
bG ‖ı(f )‖2 d—(ı) (f ∈ C∞c (G)):

Proof: Let h = f ∗ ∗ f with f ∗(x) = f (x−1), then h(e) = ‖f ‖2 and ı(h) = ı(f )∗ı(f ).

Definition (distribution character)
Θı(h) = tr(ı(h)) (h ∈ C∞c (G)) defines the distribution character Θı ∈ D′(G) of ı.

• determines ı uniquely
• conjugation-invariant
• (Harish-Chandra) locally integrable function, also denoted by Θı(x), analytic on the open

dense subset of regular elements Greg = {x ∈ G : dimZG(x) smallest possible}

 f (e) =

Z
bG Θı(f ) d—(ı); Θı(f ) =

Z
G

Θı(x)f (x) dx:
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Strategy

f (e) =

Z
bG Θı(f ) d—(ı) Θı(f ) =

Z
G

Θı(x)f (x) dx

(Very rough) Strategy

Compute Θı(f ) for all/sufficiently many representations ı ∈ bG and recover f (e) from (Θı(f ))ı.

ProblembG not classified for most real reductive groups G

 identify those representations ı ∈ bG that are contained in supp—
 bGtemp: tempered dual
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The case G = SU(2)

To illustrate the general method, we prove the inversion formula in the case G = SU(2)
(method works essentially in the same way for all compact Lie groups modulo technicalities)

For G = SU(2): bG = {[ın] : n ∈ N}, dimın = n + 1, Θn = Θın

Theorem (Peter–Weyl)

f (e) =
∞X
n=0

(n + 1)Θn(f )

To compute

Θn(f ) =

Z
G

Θn(x)f (x) dx

we first need an expression for the character Θn(x) = tr(ın(x)).
Note: Θn is conjugation-invariant and every element in SU(2) is conjugate to a diagonal matrix

t„ =

 
e i„ 0
0 e−i„

!
:

 Θn determined by its values on the maximal torus T = {t„ : „ ∈ R}
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The case G = SU(2) – cont’d

Direct computation:

Θn(t„) =
e i(n+1)„ − e−i(n+1)„

e i„ − e−i„

To integrate over G = {gtg−1 : g ∈ G; t ∈ T} we use the Weyl integration formula:Z
G
’(x) dx =

1

2

Z
T

Z
G=T

’(gtg−1) d(gT )|DT (t)|2 dt;

where DT (t„) = e i„ − e−i„ = 2i sin „.

⇒ Θn(f ) =
1

2

Z
T

DT (t)Θn(t)| {z }
=−(e i(n+1)„−e−i(n+1)„)

DT (t)

Z
G=T

f (gtg−1) d(gT )| {z }
F Tf (t):=

dt

F Tf ∈ C∞(T ) is called orbital integral of f along T
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The case G = SU(2) – cont’d

To recover f (e) from (Θn(f ))n observe that

d

d„

˛̨̨̨
„=0

F Tf (t„) = 2i cos „

Z
G=T

f (gt„g
−1) d(gT )

˛̨̨̨
˛
„=0

+ 2i sin „
d

d„

Z
G=T

f (gt„g
−1) d(gT )

˛̨̨̨
˛
„=0

= 2i f (e)

 Recover d
d„

˛̨̨
„=0

F Tf (t„) from

Θn(f ) = −1

2

Z 2ı

0
(e i(n+1)„ − e−i(n+1)„)F Tf (t„)

d„

2ı

 Multiply by (n + 1), write (n + 1)(e i(n+1)„ − e−i(n+1)„) = i dd„ (e i(n+1)„ + e−i(n+1)„) and
integrate by parts:

(n + 1)Θn(f ) =
i

2

Z 2ı

0

d

d„
(e i(n+1)„ + e−i(n+1)„)F Tf (t„)

d„

2ı

=
1

2i

Z 2ı

0
(e i(n+1)„ + e−i(n+1)„)

d

d„
F Tf (t„)

d„

2ı
:
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The case G = SU(2) – summary

To extract d
d„

˛̨̨
„=0

F Tf (t„), we sum over n and use the Fourier series expansion:

∞X
n=0

(n + 1)Θn(f ) =
1

2i

X
m∈Z

\d
d„
F Tf (m) =

1

2i

d

d„

˛̨̨̨
„=0

F Tf (t„) = f (e):

Tools used in the proof:

• Maximal torus T
• Weyl integration formula
• Character formula for Θı(t„)

• Fourier series expansion to express F Tf in terms of Θı(f )  need F Tf ∈ C∞(T )

• formula recovering f (e) from the orbital integral F Tf (t)
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Cartan subgroups

Example G = SL(2;R): every element is conjugate to either

k„ =

 
cos „ sin „
− sin „ cos „

!
; ±at = ±

 
et 0
0 e−t

!
or ±

 
1 1
0 1

!
:

 two non-conjugate Cartan subgroups T and A ∪ (−A)
 TG ∪ (±A)G = {ghg−1 : g ∈ G; h ∈ T ∪ (±A)} is dense in G with complement of measure 0

General structure theory
• G linear connected reductive with Cartan involution „
• g = k⊕ p corresponding Cartan decomposition, K ⊆ G corresponding maximal compact

subgroup
• There exist only finitely many non-conjugate „-stable Cartan subalgebras (i.e. maximal
„-stable abelian subalgebras) h1; : : : ; hr of g ( h = (h ∩ k)⊕ (h ∩ p))
Note: all hj;C are conjugate in gC, in particular: rank(G) := dim hj independent of j

• The corresponding Cartan subgroups Hj = ZG(hj) are abelian, Hj = (Hj ∩K)(Hj ∩ exp(p))
and the union HG1;reg ∪ : : : ∪HGr;reg is open and dense in G.

• There exists precisely one hj for which hj ∩ k resp. hj ∩ p is of maximal dimension.
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Cartan subgroups for SL(n;R)
Example G = SL(n;R) with K = SO(n):For 0 ≤ j ≤ bn2c let

hj =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

0BBBBBBBBBBBBBBB@

 
t1 „1
−„1 t1

!
. . .  

tj „j
−„j tj

!
s2j+1

. . .
sn

1CCCCCCCCCCCCCCCA
:

ti ; si ; „i ∈ R

2
P
ti +

P
si = 0

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;
 non-conjugate „-stable Cartan subalgebras h0; : : : ; hb n

2
c

• h0 ∩ p = h0 of maximal dimension
• hb n

2
c ∩ k of maximal dimension; moreover: hb n

2
c ⊆ k ⇔ n = 2
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Weyl Integration Formula

h1; : : : ; hr maximal set of non-conjugate „-stable Cartan subalgebras, Hj = ZG(hj) the
corresponding Cartan subgroups.After suitable normalization of measures:

Weyl Integration FormulaZ
G
’(x) dx =

rX
j=1

1

|W (G;Hj)|

Z
Hj

Z
G=Hj

’(ghg−1) d(gHj)|DHj (h)|2 dh;

where

• W (G;Hj) = NG(Hj)=ZG(Hj) is the corresponding (finite) Weyl group,
• DHj (h) the Weyl denominator (expressed in terms of the root system ∆(gC; hj;C)).
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Weyl Integral Formula – examples

G = SL(2;R)
There are two conjugacy classes of Cartan subgroups:

T = K =

(
k„ =

 
cos „ sin „
− sin „ cos „

!
: „ ∈ R

)
and H =

(
±at = ±

 
et 0
0 e−t

!
: t ∈ R

)
:

We have W (G; T ) = {[e]} and W (G;H) = {[e]; [w0]} with w0 =

 
0 1
−1 0

!
and hence

Z
G
’(x) dx =

Z
T

Z
G=T

’(gtg−1)|DT (t)|2 d(gT ) dt +
1

2

Z
H

Z
G=H

’(ghg−1)|DH(h)|2 d(gH) dh;

where
DT (k„) = e i„ − e−i„ = 2i sin „; DH(±at) = ±(et − e−t) = ±2 sinh t:
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Weyl Integral Formula – examples

G = SL(2;C)
There is only one conjugacy class of Cartan subgroups:

H = TA =

(
t„at =

 
e i„ 0
0 e−i„

! 
et 0
0 e−t

!
=

 
et+i„ 0

0 e−t−i„

!
: t; „ ∈ R

)
:

We have W (G;H) = {[e]; [w0]} with w0 =

 
0 1
−1 0

!
and hence

Z
G
’(x) dx =

1

2

Z
H

Z
G=H

’(ghg−1)|DH(h)|2 d(gH) dh;

where
DH(t„at) = 2(cosh 2t − cos 2„):
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Weyl Integral Formula – application to characters

Applying the Weyl Integral Formula to Θı(f ) =
R
G Θı(x)f (x) dx :

Θı(f ) =
rX
j=1

1

|W (G;Hj)|

Z
Hj

Z
G=Hj

Θı(ghg−1)f (ghg−1)|DHj (h)|2 d(gH) dh

=
rX
j=1

1

|W (G;Hj)|

Z
Hj

"Hj (h)DHj (h)Θı(h)× "Hj (h)DHj (h)

Z
G=Hj

f (ghg−1) d(gH)| {z }
F
Hj
f (h):=

dh

 orbital integral FHf (h) for every Cartan subgroup H
 compute Θı(f ) for enough representations ı to recover FHf (h) from Θı(f )
 express f (e) in terms of FHf (h) for some H
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The case SL(2;C) – representations

What are the irreducible unitary representations of SL(2;C)?
Consider the minimal parabolic subgroup P = MAN with

M =

(
t„ =

 
e i„ 0
0 e−i„

!
: „ ∈ R

)
A =

(
at =

 
et 0
0 e−t

!
: t ∈ R

)
; N =

 
1 ?
0 1

!
and form the principal series representations

ın;– = IndGP (ffn ⊗ e– ⊗ 1) (n ∈ Z; – ∈ C);

with ffn(t„) = e in„ and e–(at) = e–t .

The unitary dual of G = SL(2;C)
• The trivial representation,
• The unitary principal series ın;i– (n ∈ Z, – ∈ R) with ın;i– ' ı−n;−i–,
• The complementary series ı0;– (– ∈ (−1; 1) \ {0}) with ı0;– ' ı0;−–.

Note: The Cartan subgroup H splits into H = TA with T = M.
 P = MAN is associated to H
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The case SL(2;C) – characters

The character Θn;i– = Θın;i– of the induced representation can be expressed in terms of the
induction parameters ffn and e–, and together with the Weyl Integral Formula we obtain
(assuming f (kgk−1) = f (g) for all k ∈ K = SU(2)):

Θn;i–(f ) =

Z
H

(ffn ⊗ e i–)(h)FHf (h) dh =

Z 2ı

0

Z
R
e in„e i–tFHf (t„at) dt

d„

2ı
:

One can show that FHf ∈ C∞c (H), so Fourier inversion on M ' T and A ' R yields:

FHf (t„at) =
1

2ı

X
n∈Z

Z
R

Θn;i–(f )e−in„e−i–t d–:

Next: Recover f (e) from FHf (h)
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The case SL(2;C) – inversion formula

Write Σ(gC; hC) = {±¸;±¸} for the root system of gC = sl(2;C)⊕ sl(2;C) and denote by
@(¸) resp. @(¸) the derivative in the direction of ¸ resp. ¸ ∈ t∗ ' t ' T .

Lemma

−1

2
@(¸)@(¸)FHf (e) = (2ı)2 · f (e) (f ∈ C∞c (G)):

Proof: Transfer the statement to the Lie algebra (version of the Weyl Integral Formula on g)
and use classical Fourier analysis.

In the coordinates („; t) 7→ t„at ∈ H we have @(¸)@(¸) = @2

@„2
+ @2

@t2
, hence:

FHf (t„at) =
1

2ı

X
n∈Z

Z
R

Θn;i–(f )e−in„e−i–t d–

⇒ (2ı)3f (e) =
1

2

X
n∈Z

Z
R

Θn;i–(f )(n2 + –2) d–:
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The case SL(2;C) – Plancherel formula

(2ı)3f (e) =
1

2

X
n∈Z

Z
R

Θn;i–(f )(n2 + –2) d–:

Taking into account the symmetry ı−n;−i– ' ın;i– ⇒ Θn;i–(f ) = Θ−n;−i–(f )we find:

Plancherel Theorem for G = SL(2;C)
For every f ∈ C∞c (G):

‖f ‖2L2(G) =
1

(2ı)3

X
n∈Z

Z ∞
0
‖Θn;i–‖2(n2 + –2) d–:

In particular,

L2(G) '
M
n∈Z

Z ∞
0

ın;i– ⊗ ı∗n;i– d–:

Note: The complementary series (which forms a non-empty open subset of bG) does not
contribute to the Plancherel formula.
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The case SL(2;R) – principal series characters

Consider the minimal parabolic subgroup P = MAN with

M = {±I} ; A =

(
at =

 
et 0
0 e−t

!
: t ∈ R

)
; N =

 
1 ?
0 1

!
;

and form the principal series representations

ı±;– = IndGP (ff± ⊗ e– ⊗ 1) (– ∈ C);

with ff±(−I) = ±1 and e–(at) = e–t .

The character Θff;i– = Θıff;i– vanishes on the Cartan subgroup T = K, and on H it can be
expressed in terms of ff± and e i–, so together with the Weyl Integral Formula:

 Θ±;i–(f ) =
1

2

Z
R

“
FHf (at)∓ FHf (−at)

”
e i–t dt:

Similar as for SL(2;C), we have FHf ∈ C∞c (H) and Fourier inversion yields:

⇒ FHf (±at) =
1

2ı

Z
R

“
Θ−;i–(f )±Θ+;i–(f )

”
e−i–t d–:

But: d
dt

˛̨̨
t=0

FHf (at) = 0  need more Θı(f ) to recover f (e)
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The case SL(2;R) – discrete series

Definition (discrete series)
An irreducible unitary representation ı of G is called discrete series if the matrix coefficient mv;w
given by

mv;w (g) = 〈v; ı(g)w〉 (g ∈ G)

belongs to L2(G) for all v; w ∈ Hı.

 Hı ⊗H∗ı ,→ L2(G); v ⊗ w → mv;w is a G × G-equivariant embedding
 ı ⊗ ı∗ occurs discretely in the Plancherel formula

Discrete series representations for SL(2;R): ı±n with n ≥ 2

• subrepresentation of ıff;– with (ff; –) = ((−1)n; n − 1),
• lowest K-type ff±n(k„) = e±in„.  parameterized by rep’s of K

 character formula for ı±n using the embedding into ıff;–
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The case SL(2;R) – discrete series characters

More convenient to treat ın = ı+
n ⊕ ı−n and its character Θn:

Θn+1(f ) =
1

2ı

Z 2ı

0
(e in„ − e−in„)F Tf (k„) d„

+
1

4

Z
R

(ent(1− sgnt) + e−nt(1 + sgnt))(FHf (at)− (−1)n+1FHf (−at)) dt:

In contrast to FHf (±at), the orbital integral F Tf (k„) has singularities at „ = 0 and „ = ı:

F Tf (k0+)− F Tf (k0−) = iıFAf (a0) and F Tf (kı+)− F Tf (kı−) = iıFAf (−a0):

Lemma

lim
„→0

d

d„
F Tf (k„) = −2ıif (e):

To involve d
d„F

T
f (k„) in Θn+1(f ), we multiply by n, rewrite n(e in„ − e−in„) = 1

i
d
d„ (e in„ + e−in„)

and integrate by parts.
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The case SL(2;R) – Plancherel formula

⇒
∞X
n=1

nΘn+1(f ) = − 1

2ıi

X
k∈Z

Z 2ı

0
e ik„

d

d„
F Tf (k„) d„ +

1

2ıi

Z 2ı

0

d

d„
F Tf (k„) d„

+
1

2

∞X
n=1

Z
R
e−n|t|sgn(t)

d

dt

“
FHf (at) + (−1)nFHf (−at)

”
dt:

• First term (Fourier series + regularity of d
d„F

T
f (k„))  f (e)

• Second term (Behaviour of F Tf (k„) at „ = 0; ı)  FHf (±a0)  
R
R Θ−;i–(f ) d–

• Third term (Parseval’s Formula + Fourier transform of FHf (at))  
R
R

–2

n2+–2
Θ±;i– d–

⇒ 2ıf (e) =
∞X
n=1

nΘn+1(f ) +
1

4

Z
R

Θ+;i–(f )– tanh(ı–2 ) d–+
1

4

Z
R

Θ−;i–(f )– coth(ı–2 ) d–:

Plancherel Theorem for SL(2;R)

L2(G) '
∞M
n=2

“ ˆ
ı+
n ⊗ (ı+

n )∗
˜
⊕
ˆ
ı+
n ⊗ (ı+

n )∗
˜ ”
⊕
M
±

Z ∞
0

ˆ
ı±;i– ⊗ ı∗±;i–

˜
d–:
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The case SL(2;R) – summary

• Two conjugacy classes of Cartan subgroups:
• H = MA  minimal parabolic subgroup P = MAN  unitary principal series ıff;i–
• T = K  discrete series ı±

n

• Weyl integration formula + character formulas:

Θn(f ) =

Z
T

(: : :)F Tf (t) dt +

Z
H

(: : :)FHf (h) dh

Θ±;i–(f ) =

Z
H

(: : :)FHf (h) dh

• Using Euclidean Fourier analysis on H and Fourier series on T + singularities of F Tf
 solve for F Tf (k„) (or rather d

d„

˛̨̨
„=0

F Tf (k„))
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