The Plancherel formula for real reductive groups Examples

Jan Frahm (Aarhus University)

AIM RTG – Language School "Representation Theory for C^* -Theorists" August 23, 2021

General theory

Let G be a real reductive Lie group (e.g. $SL(n, \mathbb{R})$, $GL(n, \mathbb{R})$, $Sp(n, \mathbb{R})$, O(p, q)). Let dx denote a Haar measure on G, then $G \times G$ acts unitarily on $L^2(G) = L^2(G, dx)$ by

$$[(g,h)\cdot f](x)=f(g^{-1}xh) \qquad (g,h,x\in G).$$

Question

How does $L^2(G)$ decompose into *irreducible* representations of $G \times G$?

- Denote by \widehat{G} the *unitary dual* of G endowed with the *Fell topology*.
- Generalized Fourier coefficients: For $f \in C_c^{\infty}(G)$ and $(\pi, \mathcal{H}_{\pi}) \in \widehat{G}$:

$$\pi(f) = \int_G f(x)\pi(x) dx : \mathcal{H}_{\pi} \to \mathcal{H}_{\pi}.$$

Then $\pi(f)$ is trace class, in particular $\pi(f) \in \mathsf{HS}(\mathcal{H}_\pi) \simeq \mathcal{H}_\pi \otimes \mathcal{H}_\pi^*$, and

$$\pi((g,h)\cdot f)=\pi(g)\circ\pi(f)\circ\pi(h)^{-1}$$

 $\rightsquigarrow f \mapsto \pi(f)$ intertwines the actions of $G \times G$ on $C_c^{\infty}(G)$ and $\pi \otimes \pi^*$.

• Fourier transform: $C_c^{\infty}(G) \to \prod_{\pi \in \widehat{G}} \mathsf{HS}(\mathcal{H}_{\pi}), \ f \mapsto \widehat{f}, \ \mathsf{where} \ \widehat{f}(\pi) = \pi(f)$

General theory

Theorem

There exists a unique Radon measure μ on \widehat{G} such that

$$||f||_{L^2(G)}^2 = \int_{\widehat{G}} ||\pi(f)||_{\mathsf{HS}(\mathcal{H}_\pi)}^2 \, d\mu(\pi) \qquad (f \in C_c^\infty(G)).$$

In other words, the unitary representation of $G \times G$ on $L^2(G)$ decomposes into the direct integral

$$L^2(G)\simeq \int_{\widehat{G}}\mathcal{H}_\pi\otimes\mathcal{H}_\pi^*\,d\mu(\pi).$$

Goal

Determine the *Plancherel measure* μ explicitly.

→ Harish-Chandra '76

Assumptions on G: Harish-Chandra class (closed under passing to Levi subgroups)

(Some results in this talk are for simplicity stated under stronger assumptions.)

Why $\pi \otimes \pi^*$? Why multiplicity one?

A general irreducible unitary representation of $G \times G$ is of the form $\pi \otimes \tau$ with $\pi, \tau \in \widehat{G}$.

Question

Why do only representations of the form $\pi \otimes \pi^*$ occur in $L^2(G)$? Why with multiplicity one?

- Every embedding $\iota: \pi^{\infty} \otimes \tau^{\infty} \hookrightarrow C^{\infty}(G)$ gives rise to $\eta = \delta_{e} \circ \iota \in \operatorname{Hom}(\pi^{\infty} \otimes \tau^{\infty}, \mathbb{C})$: $\eta(v \otimes w) = \iota(v \otimes w)(e).$
- If ι is $G \times G$ -equivariant, the embedding is given by taking matrix coefficients:

$$\iota(v\otimes w)(g)=\eta(\pi(g)^{-1}v\otimes w)=\eta(v\otimes au(g)w)$$

and hence

$$\eta \in \mathsf{Hom}_{\mathcal{G}}(\pi^{\infty} \otimes \tau^{\infty}, \mathbb{C}) \neq \{0\} \stackrel{\pi, \tau \text{ irred.}}{\Leftrightarrow} \tau \simeq \pi^{*}.$$

- dim $\mathsf{Hom}_{\mathsf{G}}(\pi^\infty\otimes\pi^{*,\infty},\mathbb{C})=1$ (Schur's Lemma) \Rightarrow multiplicity one
- Alternative interpretation: $G \simeq (G \times G)/\text{diag}(G)$ and $\eta \in (\pi \otimes \tau)^{-\infty, \text{diag}(G)}$ \rightarrow generalization to homogeneous spaces G/H and $\Pi \in \widehat{G}$ with $\eta \in \Pi^{-\infty, H}$

Examples

1 *G* compact: Peter–Weyl Theorem

$$\int_G |f(x)|^2 dx = \sum_{[\pi] \in \widehat{G}} d_\pi \|\pi(f)\|_{\mathsf{HS}(\mathcal{H}_\pi)}^2 \qquad \text{with } d_\pi = \dim \mathcal{H}_\pi.$$

Special case: $G = \mathbb{T}$ Fourier series

2 $G = \mathbb{R}$: Fourier transform

$$\int_{\mathbb{R}} |f(x)|^2 dx = \int_{\mathbb{R}} |\widehat{f}(\xi)|^2 d\xi.$$

3 Today: $G = SL(2, \mathbb{R}), SL(2, \mathbb{C})$

Characters

Lemma

The inversion formula implies the Plancherel formula:

$$h(e) = \int_{\widehat{G}} \operatorname{tr}(\pi(h)) \, d\mu(\pi) \quad (h \in C_c^{\infty}(G)) \quad \Rightarrow \quad \|f\|_{L^2(G)}^2 = \int_{\widehat{G}} \|\pi(f)\|^2 \, d\mu(\pi) \quad (f \in C_c^{\infty}(G)).$$

Proof: Let
$$h = f^* * f$$
 with $f^*(x) = \overline{f(x^{-1})}$, then $h(e) = ||f||^2$ and $\pi(h) = \pi(f)^*\pi(f)$.

Definition (distribution character)

 $\Theta_{\pi}(h) = \operatorname{tr}(\pi(h)) \ (h \in C_c^{\infty}(G))$ defines the distribution character $\Theta_{\pi} \in \mathcal{D}'(G)$ of π .

- determines π uniquely
- conjugation-invariant
- (Harish-Chandra) locally integrable function, also denoted by $\Theta_{\pi}(x)$, analytic on the open dense subset of regular elements $G_{\text{reg}} = \{x \in G : \dim Z_G(x) \text{ smallest possible}\}$

$$ightsquigarrow f(e) = \int_{\widehat{G}} \Theta_{\pi}(f) \, d\mu(\pi), \qquad \Theta_{\pi}(f) = \int_{G} \Theta_{\pi}(x) f(x) \, dx.$$

Strategy

$$f(e) = \int_{\widehat{G}} \Theta_{\pi}(f) d\mu(\pi) \qquad \Theta_{\pi}(f) = \int_{G} \Theta_{\pi}(x) f(x) dx$$

(Very rough) Strategy

Compute $\Theta_{\pi}(f)$ for all/sufficiently many representations $\pi \in \widehat{G}$ and recover f(e) from $(\Theta_{\pi}(f))_{\pi}$.

Problem

 \widehat{G} not classified for most real reductive groups G

- ightarrow identify those representations $\pi \in \widehat{\mathcal{G}}$ that are contained in $\operatorname{\mathsf{supp}} \mu$
- $\rightsquigarrow \widehat{G}_{temp}$: tempered dual

The case G = SU(2)

To illustrate the general method, we prove the inversion formula in the case G = SU(2) (method works essentially in the same way for all compact Lie groups modulo technicalities)

For
$$G = \mathsf{SU}(2)$$
: $\widehat{G} = \{[\pi_n] : n \in \mathbb{N}\}$, $\dim \pi_n = n + 1$, $\Theta_n = \Theta_{\pi_n}$

Theorem (Peter-Weyl)

$$f(e) = \sum_{n=0}^{\infty} (n+1)\Theta_n(f)$$

To compute

$$\Theta_n(f) = \int_G \Theta_n(x) f(x) \, dx$$

we first need an expression for the character $\Theta_n(x) = \operatorname{tr}(\pi_n(x))$.

Note: Θ_n is conjugation-invariant and every element in SU(2) is conjugate to a diagonal matrix

$$t_{ heta} = egin{pmatrix} e^{i heta} & 0 \ 0 & e^{-i heta} \end{pmatrix}.$$

 $\leadsto \Theta_n$ determined by its values on the maximal torus $T = \{t_\theta : \theta \in \mathbb{R}\}$

The case G = SU(2) - cont'd

Direct computation:

$$\Theta_n(t_{\theta}) = \frac{e^{i(n+1)\theta} - e^{-i(n+1)\theta}}{e^{i\theta} - e^{-i\theta}}$$

To integrate over $G = \{gtg^{-1} : g \in G, t \in T\}$ we use the Weyl integration formula:

$$\int_{G} \varphi(x) dx = \frac{1}{2} \int_{T} \int_{G/T} \varphi(gtg^{-1}) d(gT) |D_{T}(t)|^{2} dt,$$

where $D_T(t_\theta) = e^{i\theta} - e^{-i\theta} = 2i \sin \theta$.

$$\Rightarrow \Theta_n(f) = \frac{1}{2} \int_T \underbrace{\overline{D_T(t)}\Theta_n(t)}_{=-(e^{i(n+1)\theta} - e^{-i(n+1)\theta})} \underbrace{D_T(t) \int_{G/T} f(gtg^{-1}) d(gT)}_{F_{\varepsilon}^T(t) :=} dt$$

 $F_f^T \in C^{\infty}(T)$ is called *orbital integral* of f along T

The case G = SU(2) - cont'd

To recover f(e) from $(\Theta_n(f))_n$ observe that

$$\frac{d}{d\theta}\Big|_{\theta=0}F_f^T(t_\theta) = 2i\cos\theta \int_{G/T} f(gt_\theta g^{-1}) d(gT)\Big|_{\theta=0} + 2i\sin\theta \frac{d}{d\theta} \int_{G/T} f(gt_\theta g^{-1}) d(gT)\Big|_{\theta=0}$$
$$= 2if(e)$$

 \rightarrow Recover $\frac{d}{d\theta}\Big|_{\theta=0} F_f^T(t_\theta)$ from

$$\Theta_n(f) = -\frac{1}{2} \int_0^{2\pi} (e^{i(n+1)\theta} - e^{-i(n+1)\theta}) F_f^T(t_\theta) \frac{d\theta}{2\pi}$$

 \rightsquigarrow Multiply by (n+1), write $(n+1)(e^{i(n+1)\theta}-e^{-i(n+1)\theta})=i\frac{d}{d\theta}(e^{i(n+1)\theta}+e^{-i(n+1)\theta})$ and integrate by parts:

$$egin{aligned} (n+1)\Theta_n(f) &= rac{i}{2} \int_0^{2\pi} rac{d}{d heta} (\mathrm{e}^{i(n+1) heta} + \mathrm{e}^{-i(n+1) heta}) F_f^T(t_ heta) rac{d heta}{2\pi} \ &= rac{1}{2i} \int_0^{2\pi} (\mathrm{e}^{i(n+1) heta} + \mathrm{e}^{-i(n+1) heta}) rac{d}{d heta} F_f^T(t_ heta) rac{d heta}{2\pi}. \end{aligned}$$

The case G = SU(2) – summary

To extract $\frac{d}{d\theta}\Big|_{\theta=0} F_f^T(t_\theta)$, we sum over *n* and use the Fourier series expansion:

$$\sum_{n=0}^{\infty} (n+1)\Theta_n(f) = \frac{1}{2i} \sum_{m \in \mathbb{Z}} \widehat{\frac{d}{d\theta}} F_f^T(m) = \frac{1}{2i} \left. \frac{d}{d\theta} \right|_{\theta=0} F_f^T(t_\theta) = f(e).$$

Tools used in the proof:

- Maximal torus T
- Weyl integration formula
- Character formula for $\Theta_{\pi}(t_{\theta})$
- Fourier series expansion to express F_f^T in terms of $\Theta_{\pi}(f) \rightsquigarrow \text{need } F_f^T \in C^{\infty}(T)$
- formula recovering f(e) from the orbital integral $F_f^T(t)$

Cartan subgroups

Example $G = SL(2, \mathbb{R})$: every element is conjugate to either

$$k_{ heta} = egin{pmatrix} \cos heta & \sin heta \ -\sin heta & \cos heta \end{pmatrix}, \quad \pm a_t = \pm egin{pmatrix} e^t & 0 \ 0 & e^{-t} \end{pmatrix} \quad ext{or} \quad \pm egin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix}.$$

 \rightsquigarrow two non-conjugate Cartan subgroups T and $A \cup (-A)$

 $\leadsto T^G \cup (\pm A)^G = \{ghg^{-1} : g \in G, h \in T \cup (\pm A)\}$ is dense in G with complement of measure 0

General structure theory

- G linear connected reductive with Cartan involution θ
- $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ corresponding Cartan decomposition, $K \subseteq G$ corresponding maximal compact subgroup
- There exist only finitely many non-conjugate θ -stable Cartan subalgebras (i.e. maximal θ -stable abelian subalgebras) $\mathfrak{h}_1,\ldots,\mathfrak{h}_r$ of \mathfrak{g} $(\leadsto \mathfrak{h}=(\mathfrak{h}\cap\mathfrak{k})\oplus(\mathfrak{h}\cap\mathfrak{p}))$ Note: all $\mathfrak{h}_{i,\mathbb{C}}$ are conjugate in $\mathfrak{g}_{\mathbb{C}}$, in particular: rank(G) := dim \mathfrak{h}_i independent of i
- The corresponding Cartan subgroups $H_j = Z_G(\mathfrak{h}_j)$ are abelian, $H_j = (H_j \cap K)(H_j \cap \exp(\mathfrak{p}))$ and the union $H_{1,\text{reg}}^G \cup \ldots \cup H_{r,\text{reg}}^G$ is open and dense in G.
- There exists precisely one \mathfrak{h}_i for which $\mathfrak{h}_i \cap \mathfrak{k}$ resp. $\mathfrak{h}_i \cap \mathfrak{p}$ is of maximal dimension.

Cartan subgroups for $SL(n, \mathbb{R})$

Example $G = \mathsf{SL}(n,\mathbb{R})$ with $K = \mathsf{SO}(n)$:For $0 \le j \le \lfloor \frac{n}{2} \rfloor$ let

 \rightsquigarrow non-conjugate θ -stable Cartan subalgebras $\mathfrak{h}_0,\ldots,\mathfrak{h}_{\lfloor\frac{n}{2}\rfloor}$

- $\mathfrak{h}_0 \cap \mathfrak{p} = \mathfrak{h}_0$ of maximal dimension
- $\mathfrak{h}_{\lfloor \frac{n}{2} \rfloor} \cap \mathfrak{k}$ of maximal dimension; moreover: $\mathfrak{h}_{\lfloor \frac{n}{2} \rfloor} \subseteq \mathfrak{k} \Leftrightarrow n = 2$

Weyl Integration Formula

 $\mathfrak{h}_1, \ldots, \mathfrak{h}_r$ maximal set of non-conjugate θ -stable Cartan subalgebras, $H_j = Z_G(\mathfrak{h}_j)$ the corresponding Cartan subgroups. After suitable normalization of measures:

Weyl Integration Formula

$$\int_{G} \varphi(x) dx = \sum_{i=1}^{r} \frac{1}{|W(G, H_{i})|} \int_{H_{i}} \int_{G/H_{i}} \varphi(ghg^{-1}) d(gH_{i}) |D_{H_{i}}(h)|^{2} dh,$$

where

- $W(G, H_j) = N_G(H_j)/Z_G(H_j)$ is the corresponding (finite) Weyl group,
- $D_{H_i}(h)$ the Weyl denominator (expressed in terms of the root system $\Delta(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{j,\mathbb{C}})$).

Weyl Integral Formula – examples

$G = \mathsf{SL}(2,\mathbb{R})$

There are two conjugacy classes of Cartan subgroups:

$$\mathcal{T} = \mathcal{K} = \left\{ k_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} : \theta \in \mathbb{R} \right\} \quad \text{and} \quad \mathcal{H} = \left\{ \pm a_{t} = \pm \begin{pmatrix} e^{t} & 0 \\ 0 & e^{-t} \end{pmatrix} : t \in \mathbb{R} \right\}.$$

We have
$$W(G,T)=\{[e]\}$$
 and $W(G,H)=\{[e],[w_0]\}$ with $w_0=\begin{pmatrix}0&1\\-1&0\end{pmatrix}$ and hence

$$\int_{G} \varphi(x) dx = \int_{T} \int_{G/T} \varphi(gtg^{-1}) |D_{T}(t)|^{2} d(gT) dt + \frac{1}{2} \int_{H} \int_{G/H} \varphi(ghg^{-1}) |D_{H}(h)|^{2} d(gH) dh,$$

where

$$D_T(k_\theta) = e^{i\theta} - e^{-i\theta} = 2i\sin\theta, \qquad D_H(\pm a_t) = \pm(e^t - e^{-t}) = \pm 2\sinh t.$$

Weyl Integral Formula – examples

$G=\mathsf{SL}(2,\mathbb{C})$

There is only one conjugacy class of Cartan subgroups:

$$H = TA = \left\{ t_{\theta} a_{t} = \begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix} \begin{pmatrix} e^{t} & 0 \\ 0 & e^{-t} \end{pmatrix} = \begin{pmatrix} e^{t+i\theta} & 0 \\ 0 & e^{-t-i\theta} \end{pmatrix} : t, \theta \in \mathbb{R} \right\}.$$

We have
$$W(G,H)=\{[e],[w_0]\}$$
 with $w_0=\begin{pmatrix}0&1\\-1&0\end{pmatrix}$ and hence

$$\int_{G} \varphi(x) \, dx = \frac{1}{2} \int_{H} \int_{G/H} \varphi(ghg^{-1}) |D_{H}(h)|^{2} \, d(gH) \, dh,$$

where

$$D_H(t_\theta a_t) = 2(\cosh 2t - \cos 2\theta).$$

Weyl Integral Formula – application to characters

Applying the Weyl Integral Formula to $\Theta_{\pi}(f) = \int_{\mathcal{G}} \Theta_{\pi}(x) f(x) dx$:

$$\Theta_{\pi}(f) = \sum_{j=1}^{r} \frac{1}{|W(G, H_{j})|} \int_{H_{j}} \int_{G/H_{j}} \Theta_{\pi}(ghg^{-1}) f(ghg^{-1}) |D_{H_{j}}(h)|^{2} d(gH) dh$$

$$= \sum_{j=1}^{r} \frac{1}{|W(G, H_{j})|} \int_{H_{j}} \varepsilon_{H_{j}}(h) \overline{D_{H_{j}}(h)} \Theta_{\pi}(h) \times \underbrace{\varepsilon_{H_{j}}(h) D_{H_{j}}(h) \int_{G/H_{j}} f(ghg^{-1}) d(gH)}_{F_{f}^{H_{j}}(h):=} dh$$

- \rightsquigarrow orbital integral $F_f^H(h)$ for every Cartan subgroup H
- \rightsquigarrow compute $\Theta_{\pi}(f)$ for enough representations π to recover $F_f^H(h)$ from $\Theta_{\pi}(f)$
- \rightsquigarrow express f(e) in terms of $F_f^H(h)$ for some H

The case $SL(2, \mathbb{C})$ – representations

What are the irreducible unitary representations of $SL(2, \mathbb{C})$? Consider the minimal parabolic subgroup P = MAN with

$$M = \left\{ t_{\theta} = \begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix} : \theta \in \mathbb{R} \right\} \qquad A = \left\{ a_{t} = \begin{pmatrix} e^{t} & 0 \\ 0 & e^{-t} \end{pmatrix} : t \in \mathbb{R} \right\}, \qquad N = \begin{pmatrix} 1 & \star \\ 0 & 1 \end{pmatrix}$$

and form the principal series representations

$$\pi_{n,\lambda} = \mathsf{Ind}_P^G(\sigma_n \otimes e^\lambda \otimes 1) \qquad (n \in \mathbb{Z}, \lambda \in \mathbb{C}),$$

with $\sigma_n(t_\theta) = e^{in\theta}$ and $e^{\lambda}(a_t) = e^{\lambda t}$.

The unitary dual of $G = SL(2, \mathbb{C})$

- The trivial representation,
- The unitary principal series $\pi_{n,i\lambda}$ $(n \in \mathbb{Z}, \lambda \in \mathbb{R})$ with $\pi_{n,i\lambda} \simeq \pi_{-n,-i\lambda}$,
- The complementary series $\pi_{0,\lambda}$ $(\lambda \in (-1,1) \setminus \{0\})$ with $\pi_{0,\lambda} \simeq \pi_{0,-\lambda}$.

Note: The Cartan subgroup H splits into H = TA with T = M.

 \rightsquigarrow P = MAN is associated to H

The case $SL(2, \mathbb{C})$ – characters

The character $\Theta_{n,i\lambda}=\Theta_{\pi_{n,i\lambda}}$ of the induced representation can be expressed in terms of the induction parameters σ_n and e^{λ} , and together with the Weyl Integral Formula we obtain (assuming $f(kgk^{-1})=f(g)$ for all $k\in K=SU(2)$):

$$\Theta_{n,i\lambda}(f) = \int_{H} (\sigma_n \otimes e^{i\lambda})(h) F_f^H(h) dh = \int_0^{2\pi} \int_{\mathbb{R}} e^{in\theta} e^{i\lambda t} F_f^H(t_{\theta} a_t) dt \frac{d\theta}{2\pi}.$$

One can show that $F_f^H \in C_c^{\infty}(H)$, so Fourier inversion on $M \simeq \mathbb{T}$ and $A \simeq \mathbb{R}$ yields:

$$F_f^H(t_{\theta}a_t) = \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} \int_{\mathbb{R}} \Theta_{n,i\lambda}(f) e^{-in\theta} e^{-i\lambda t} d\lambda.$$

Next: Recover f(e) from $F_f^H(h)$

The case $SL(2, \mathbb{C})$ – inversion formula

Write $\Sigma(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})=\{\pm\alpha,\pm\overline{\alpha}\}$ for the root system of $\mathfrak{g}_{\mathbb{C}}=\mathfrak{sl}(2,\mathbb{C})\oplus\mathfrak{sl}(2,\mathbb{C})$ and denote by $\partial(\alpha)$ resp. $\partial(\overline{\alpha})$ the derivative in the direction of α resp. $\overline{\alpha}\in\mathfrak{t}^*\simeq\mathfrak{t}\simeq\mathcal{T}$.

Lemma

$$-\frac{1}{2}\partial(\overline{\alpha})\partial(\alpha)F_f^H(e)=(2\pi)^2\cdot f(e)\qquad (f\in C_c^\infty(G)).$$

Proof: Transfer the statement to the Lie algebra (version of the Weyl Integral Formula on \mathfrak{g}) and use classical Fourier analysis.

In the coordinates $(\theta, t) \mapsto t_{\theta} a_t \in H$ we have $\partial(\overline{\alpha})\partial(\alpha) = \frac{\partial^2}{\partial \theta^2} + \frac{\partial^2}{\partial t^2}$, hence:

$$F_f^H(t_\theta a_t) = \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} \int_{\mathbb{R}} \Theta_{n,i\lambda}(f) e^{-in\theta} e^{-i\lambda t} d\lambda$$

$$\Rightarrow \qquad (2\pi)^3 f(e) = \frac{1}{2} \sum_{n \in \mathbb{Z}} \int_{\mathbb{R}} \Theta_{n,i\lambda}(f) (n^2 + \lambda^2) d\lambda.$$

The case $SL(2, \mathbb{C})$ – Plancherel formula

$$(2\pi)^3 f(e) = \frac{1}{2} \sum_{n \in \mathbb{Z}} \int_{\mathbb{R}} \Theta_{n,i\lambda}(f) (n^2 + \lambda^2) d\lambda.$$

Taking into account the symmetry $\pi_{-n,-i\lambda} \simeq \pi_{n,i\lambda} \Rightarrow \Theta_{n,i\lambda}(f) = \Theta_{-n,-i\lambda}(f)$ we find:

Plancherel Theorem for $G = SL(2, \mathbb{C})$

For every $f \in C_c^{\infty}(G)$:

$$||f||_{L^2(G)}^2 = \frac{1}{(2\pi)^3} \sum_{n \in \mathbb{Z}} \int_0^\infty ||\Theta_{n,i\lambda}||^2 (n^2 + \lambda^2) d\lambda.$$

In particular,

$$L^2(G) \simeq \bigoplus_{n \in \mathbb{Z}} \int_0^\infty \pi_{n,i\lambda} \otimes \pi_{n,i\lambda}^* d\lambda.$$

Note: The complementary series (which forms a non-empty open subset of \widehat{G}) does not contribute to the Plancherel formula.

The case $SL(2,\mathbb{R})$ – principal series characters

Consider the minimal parabolic subgroup P = MAN with

$$M=\{\pm I\}$$
, $A=\left\{a_t=egin{pmatrix}e^t&0\0&e^{-t}\end{pmatrix}:t\in\mathbb{R}
ight\}$, $N=egin{pmatrix}1&\star\0&1\end{pmatrix}$,

and form the principal series representations

$$\pi_{\pm,\lambda} = \mathsf{Ind}_{P}^{\mathcal{G}}(\sigma_{\pm} \otimes e^{\lambda} \otimes 1) \qquad (\lambda \in \mathbb{C}),$$

with $\sigma_{\pm}(-I)=\pm 1$ and $e^{\lambda}(a_t)=e^{\lambda t}$.

The character $\Theta_{\sigma,i\lambda} = \Theta_{\pi_{\sigma,i\lambda}}$ vanishes on the Cartan subgroup T = K, and on H it can be expressed in terms of σ_{\pm} and $e^{i\lambda}$, so together with the Weyl Integral Formula:

$$\hookrightarrow$$
 $\Theta_{\pm,i\lambda}(f) = \frac{1}{2} \int_{\mathbb{D}} \left(F_f^H(a_t) \mp F_f^H(-a_t) \right) e^{i\lambda t} dt.$

Similar as for $SL(2,\mathbb{C})$, we have $F_f^H \in C_c^{\infty}(H)$ and Fourier inversion yields:

$$\Rightarrow F_f^H(\pm a_t) = \frac{1}{2\pi} \int_{\mathbb{D}} \left(\Theta_{-,i\lambda}(f) \pm \Theta_{+,i\lambda}(f) \right) e^{-i\lambda t} d\lambda.$$

But:
$$\frac{d}{dt}\Big|_{t=0} F_f^H(a_t) = 0$$
 \longrightarrow need more $\Theta_{\pi}(f)$ to recover $f(e)$

The case $SL(2, \mathbb{R})$ – discrete series

Definition (discrete series)

An irreducible unitary representation π of G is called discrete series if the matrix coefficient $m_{\nu,w}$ given by

$$m_{v,w}(g) = \langle v, \pi(g)w \rangle \qquad (g \in G)$$

belongs to $L^2(G)$ for all $v, w \in \mathcal{H}_{\pi}$.

- $\rightarrow \mathcal{H}_{\pi} \otimes \mathcal{H}_{\pi}^* \hookrightarrow L^2(G)$, $v \otimes w \rightarrow m_{v,w}$ is a $G \times G$ -equivariant embedding
- $ightarrow \pi \otimes \pi^*$ occurs discretely in the Plancherel formula

Discrete series representations for $SL(2,\mathbb{R})$: π_n^{\pm} with $n\geq 2$

- subrepresentation of $\pi_{\sigma,\lambda}$ with $(\sigma,\lambda)=((-1)^n,n-1)$,
- lowest K-type $\sigma_{\pm n}(k_{\theta}) = e^{\pm in\theta}$.

 \rightarrow parameterized by rep's of K

 \rightsquigarrow character formula for π_n^{\pm} using the embedding into $\pi_{\sigma,\lambda}$

The case $SL(2, \mathbb{R})$ – discrete series characters

More convenient to treat $\pi_n = \pi_n^+ \oplus \pi_n^-$ and its character Θ_n :

$$egin{aligned} \Theta_{n+1}(f) &= rac{1}{2\pi} \int_0^{2\pi} (e^{in heta} - e^{-in heta}) F_f^T(k_ heta) \, d heta \ &+ rac{1}{4} \int_{\mathbb{R}} (e^{nt} (1- ext{sgn}t) + e^{-nt} (1+ ext{sgn}t)) (F_f^H(a_t) - (-1)^{n+1} F_f^H(-a_t)) \, dt. \end{aligned}$$

In contrast to $F_f^H(\pm a_t)$, the orbital integral $F_f^T(k_\theta)$ has singularities at $\theta=0$ and $\theta=\pi$:

$$F_f^T(k_{0+}) - F_f^T(k_{0-}) = i\pi F_f^A(a_0)$$
 and $F_f^T(k_{\pi+}) - F_f^T(k_{\pi-}) = i\pi F_f^A(-a_0)$.

Lemma

$$\lim_{\theta \to 0} \frac{d}{d\theta} F_f^T(k_\theta) = -2\pi i f(e).$$

To involve $\frac{d}{d\theta}F_f^T(k_\theta)$ in $\Theta_{n+1}(f)$, we multiply by n, rewrite $n(e^{in\theta}-e^{-in\theta})=\frac{1}{i}\frac{d}{d\theta}(e^{in\theta}+e^{-in\theta})$ and integrate by parts.

The case $SL(2,\mathbb{R})$ – Plancherel formula

$$\Rightarrow \sum_{n=1}^{\infty} n\Theta_{n+1}(f) = -\frac{1}{2\pi i} \sum_{k \in \mathbb{Z}} \int_{0}^{2\pi} e^{ik\theta} \frac{d}{d\theta} F_f^T(k_\theta) d\theta + \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{d}{d\theta} F_f^T(k_\theta) d\theta + \frac{1}{2} \sum_{n=1}^{\infty} \int_{\mathbb{R}} e^{-n|t|} \operatorname{sgn}(t) \frac{d}{dt} \left(F_f^H(a_t) + (-1)^n F_f^H(-a_t) \right) dt.$$

- First term (Fourier series + regularity of $\frac{d}{d\theta}F_f^T(k_\theta)) \rightsquigarrow f(e)$
- Second term (Behaviour of $F_f^T(k_\theta)$ at $\theta = 0, \pi) \rightsquigarrow F_f^H(\pm a_0) \rightsquigarrow \int_{\mathbb{R}} \Theta_{-,i\lambda}(f) d\lambda$
- Third term (Parseval's Formula + Fourier transform of $F_f^H(a_t)$) $\leadsto \int_{\mathbb{R}} \frac{\lambda^2}{n^2 + \lambda^2} \Theta_{\pm,i\lambda} \, d\lambda$

$$\Rightarrow \quad 2\pi f(e) = \sum_{n=1}^{\infty} n\Theta_{n+1}(f) + \frac{1}{4} \int_{\mathbb{R}} \Theta_{+,i\lambda}(f) \lambda \tanh(\frac{\pi\lambda}{2}) \, d\lambda + \frac{1}{4} \int_{\mathbb{R}} \Theta_{-,i\lambda}(f) \lambda \coth(\frac{\pi\lambda}{2}) \, d\lambda.$$

Plancherel Theorem for $SL(2, \mathbb{R})$

$$L^2(G) \simeq \bigoplus_{n=2}^{\infty} \left(\left[\pi_n^+ \otimes (\pi_n^+)^* \right] \oplus \left[\pi_n^+ \otimes (\pi_n^+)^* \right] \right) \oplus \bigoplus_{+} \int_0^{\infty} \left[\pi_{\pm,i\lambda} \otimes \pi_{\pm,i\lambda}^* \right] d\lambda.$$

The case $SL(2, \mathbb{R})$ – summary

- Two conjugacy classes of Cartan subgroups:
 - $H = MA \rightsquigarrow$ minimal parabolic subgroup $P = MAN \rightsquigarrow$ unitary principal series $\pi_{\sigma,i\lambda}$
 - $T=K \rightsquigarrow \mathsf{discrete} \; \mathsf{series} \; \pi_n^\pm$
- Weyl integration formula + character formulas:

$$\Theta_n(f) = \int_T (\ldots) F_f^T(t) dt + \int_H (\ldots) F_f^H(h) dh$$

$$\Theta_{\pm,i\lambda}(f) = \int_H (\ldots) F_f^H(h) dh$$

• Using Euclidean Fourier analysis on H and Fourier series on T + singularities of F_f^T \rightsquigarrow solve for $F_f^T(k_\theta)$ (or rather $\frac{d}{d\theta}\Big|_{\theta=0} F_f^T(k_\theta)$)

References

- Peter Hochs, *The discrete series of semisimple groups*, September 2019, Lecture notes, available at https://www.math.ru.nl/~hochs/Discrete_series.pdf.
- \blacksquare ______, Harish-Chandra's Plancherel formula for $SL(2,\mathbb{R})$, September 2019, Lecture notes, available at https://www.math.ru.nl/ \sim hochs/HC_Plancherel_formula.pdf.
- Anthony W. Knapp, Representation theory of semisimple groups. An overview based on examples, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986.
- Tomasz Przebinda, *Plancherel formula for a real reductive group*, July/August 2019, Lecture notes, available at https://tomasz.przebinda.com/Xiamen_Lectures_2019%20-revised6.pdf.

