Representations of reductive groups

David Vogan

RTNCG August-September 2021

David Vogan

troduction

Langlands classification A

 (\mathfrak{g}, K) -module

 $R(\mathfrak{h}, L)$ -m

classification B

Cartan subgroups

Langlands classification C

Outline

What are these talks about?

Langlands classification: big picture

Introduction to Harish-Chandra modules

 (\mathfrak{h}, L) -modules as ring modules

Langlands classification: some details

Cartan subgroups of real reductive groups

Langlands classification: getting explicit

Representations of $K(\mathbb{R})$

David Vogan

ntroduction

Langlands classification A

g, rt j moduli

 $R(\mathfrak{h}, L)$ -mod

classification B

- - - - l - - - - l -

Langlands classification C

Old days: assumed $G(\mathbb{R})$ connected semisimple.

Problem is that $G(\mathbb{R})$ is studied using Levi subgroups; these aren't connected even if G is. Here are some possible assumptions for us:

1. Narrowest: *G* complex connected reductive algebraic

- defined over ℝ, G(ℝ) = real points.
 2. Somewhat weaker: G(ℝ) is transpose-stable subgp of GL(n, ℝ) with G(ℝ)/G(ℝ)₀ finite.
- 3. Still weaker: $G(\mathbb{R})$ is finite cover of a group as in (2).

General notation: $\mathfrak{g}(\mathbb{R}) = \text{Lie}(G(\mathbb{R})), \, \mathfrak{g} = \mathfrak{g}(\mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C}.$

Everything I say holds exactly under (1);

lots is still true under the (strictly weaker) (2);

most things work under (3).

 $G(\mathbb{R}) \hookrightarrow GL(n,\mathbb{R})$, stable by transpose, $G(\mathbb{R})/G(\mathbb{R})_0$ finite.

Cartan involution of $GL(n,\mathbb{R})$ is automorphism $\theta(g) = {}^t g^{-1}$.

Recall polar decomposition:

$$GL(n, \mathbb{R}) = O(n) \times \exp(\text{symmetric matrices}).$$

= $GL(n, \mathbb{R})^{\theta} \times \exp(\mathfrak{gl}(n, \mathbb{R})^{-\theta})$

Inherited by $G(\mathbb{R})$ as Cartan decomposition for $G(\mathbb{R})$:

$$K(\mathbb{R}) = G(\mathbb{R})^{\theta} = O(n) \cap G(\mathbb{R}),$$
 $\mathfrak{s}(\mathbb{R}) = \mathfrak{g}(\mathbb{R})^{-\theta} = ext{symm matrices in } \mathfrak{g}(\mathbb{R})$
 $S(\mathbb{R}) = \exp(\mathfrak{s}(\mathbb{R})) = ext{pos def symm matrices in } G(\mathbb{R}),$
 $G(\mathbb{R}) = K(\mathbb{R}) \times S(\mathbb{R}) \simeq K(\mathbb{R}) \times \mathfrak{s}(\mathbb{R}).$

Nice structures on $G(\mathbb{R})$ come from nice structures on $K(\mathbb{R})$ by solving differential equations along $S(\mathbb{R})$.

Definition. Unitary representation of $G(\mathbb{R})$ on Hilbert space \mathcal{H}_{π} is weakly continuous homomorphism

$$\pi\colon \mathbf{G}\to \mathbf{U}(\mathcal{H}_{\pi}).$$

Irreducible if \mathcal{H}_{π} has exactly two closed $G(\mathbb{R})$ -invt subspaces.

Chevalley told Harish-Chandra to weaken this definition.

Definition. Representation of reductive $G(\mathbb{R})$ on loc cvx complete V_{π} is weakly continuous group homomorphism

$$\pi\colon G o GL(V_\pi)$$

Get a new loc cvx complete $V_{\pi}^{\infty} \subset V_{\pi}$ on which π^{∞} differentiates to action of $U(\mathfrak{g})$.

Define $\mathfrak{Z}(\mathfrak{g}) = U(\mathfrak{g})^{\operatorname{Ad}(G(\mathbb{R}))}$. Schur's lemma suggests that $\mathfrak{Z}(\mathfrak{g})$ should act by scalars on V_{π}^{∞} for irreducible π .

Always true for π unitary (Segal), fails sometimes for nonunitary π on any noncompact $G(\mathbb{R})$ (Soergel).

David Vogan

Introduction

Langlands

3/1 /

Langlands

Cartan subgroups

Langlands classification C

You know to care about $\widehat{G}(\mathbb{R})_u = \text{unitary equivalence}$ classes of irr unitary representations.

HC says to care about larger $\widehat{G}(\mathbb{R}) = \text{infinitesimal}$ equivalence classes of irr quasisimple π .

Defining infinitesimal equivalence is a bit complicated; soon...

To see the value of this, helpful to introduce $G(\mathbb{R})_h = \inf$ equiv classes of irr quasisimple π with nonzero (maybe indefinite) invariant Hermitian form.

$$\widehat{G(\mathbb{R})}_u \subset \widehat{G(\mathbb{R})}_h \subset \widehat{G(\mathbb{R})}.$$

You know that the **left** term is interesting. I claim that it's best understood by understanding the **right** term and the two inclusions...

Introduction

Langlands

g, K)-modul

n(i), L)-i

classification B

Jantan Subgroup

Langiands classification C

What representations (C)?

$$\widehat{G(\mathbb{R})}_u$$
 \subset $\widehat{G(\mathbb{R})}_h$ \subset $\widehat{G(\mathbb{R})}$ unitary \subset hermitian \subset quasisimple desirable \subset acceptable \subset available

Langlands classification beautifully describes $\widehat{G}(\mathbb{R})$ as complex algebraic variety.

Knapp-Zuckerman describe $G(\mathbb{R})_h$ as real points of this alg variety: fixed points of simple complex conjugation.

 $\widehat{G(\mathbb{R})}_u$ is cut out inside $\widehat{G(\mathbb{R})}_h$ by real algebraic inequalities, more or less computed by Adams, van Leeuwen, Trapa, V.

David Vogan

Introduction

Langlands classification

(g, K)-module

classification B

Cartan subgroups

classification C

David Vogan

Introduction

Langlands classification A

(g, A)-module

 $\Pi(1), L)$

classification B

Cartan subgroups

classification C

Your friend $K(\mathbb{R}$

Start with a reasonable category of representations... Example: cplx reductive $\mathfrak{g} \supset \mathfrak{b} = \mathfrak{h} + \mathfrak{n}$; BGG category \mathcal{O} consists of $U(\mathfrak{g})$ -modules V subject to

- 1. fin gen: $\exists V_0 \subset V$, dim $V_0 < \infty$, $U(\mathfrak{g})V_0 = V$.
- 2. \mathfrak{b} -locally finite: $\forall v \in V$, dim $U(\mathfrak{b})v < \infty$.
- 3. \mathfrak{h} -semisimple: $V = \sum_{\gamma \in \mathfrak{h}^*} V_{\gamma}$.

Want precise information about reps in the category. Example: V in category \mathcal{O}

- 1. dim V_{γ} is almost polynomial as function of γ .
- 2. V has a formal character $\left[\sum_{\lambda \in \mathfrak{h}^*} a_V(\lambda) e^{\lambda}\right] / \Delta$.

Want construction/classification of reps in the category. Example: $\lambda \in \mathfrak{h}^* \leadsto I(\lambda) =_{\mathsf{def}} U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda} = \textit{Verma module}.$

- 1. (STRUCTURE THM): $I(\lambda)$ has highest weight $\mathbb{C}_{\lambda} \hookrightarrow I(\lambda)^{\mathfrak{n}}$.
- 2. (QUOTIENT THM): $I(\lambda)$ has unique irr quo $J(\lambda)$.
- 3. (CLASSIF THM): Each irr in \mathcal{O} is $J(\lambda)$, unique $\lambda \in \mathfrak{h}^*$.

→ partial order on h*:

$$\mu' \leq \mu \iff \mu' \in \mu - \mathbb{N}\Delta^+$$

$$\iff \mu' = \mu - \sum_{\alpha \in \Delta^+} n_{\alpha}\alpha, \quad (n_{\alpha} \in \mathbb{N})$$

Proposition. Suppose $V \in \mathcal{O}$.

- 1. If $V \neq 0, \exists$ maximal $\mu \in \mathfrak{h}^*$ subject to $V_{\mu} \neq 0$.
- 2. If $\mu \in \mathfrak{h}^*$ is maxl subj to $V_{\mu} \neq 0$, then $V_{\mu} \subset V^{\mathfrak{n}}$.
- 3. If $V \neq 0$, $\exists \mu$ with $0 \neq V_{\mu} \subset V^{\mathfrak{n}}$.
- 4. $\forall \lambda \in \mathfrak{h}^*$, $\mathsf{Hom}_{\mathfrak{g}}(I(\lambda), V) \simeq \mathsf{Hom}_{\mathfrak{h}}(\mathbb{C}_{\lambda}, V^{\mathfrak{n}})$.

Parts (1)–(3) guarantee existence of "highest weights;" based on formal calculations with lattices in vector spaces, and $\mathbf{n} \cdot V_{\mu'} \subset \sum_{\alpha \in \Delta^+} V_{\mu' + \alpha}$.

Sketch of proof of (4):

$$\mathsf{Hom}_{U(\mathfrak{g})}(U(\mathfrak{g})\otimes_{U(\mathfrak{b})}\mathbb{C}_{\lambda},V)\simeq \mathsf{Hom}_{U(\mathfrak{b})}(\mathbb{C}_{\lambda},V)=\mathsf{Hom}_{U(\mathfrak{h})}(\mathbb{C}_{\lambda},V^{\mathfrak{n}}).$$

First isom: "change of rings." Second: $\mathfrak{n} \cdot \mathbb{C}_{\lambda} =_{\mathsf{def}} 0$.

Introduction

Langlands classification A

(g, K)-module

 $H(\mathfrak{h}, L)$ -mod

Classification b

Langlands

- 1. Change of rings $U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \cdot \rightsquigarrow \text{Verma mods } I(\lambda)$.
- 2. Universality: $\mathsf{Hom}_{\mathfrak{g}}(I(\lambda),V) \simeq \mathsf{Hom}_{\mathfrak{h}}(\mathbb{C}_{\lambda},V^{\mathfrak{n}}).$
- 3. Highest weight exists: J irr $\Longrightarrow J^{n} \neq 0$.

#2 is homological alg, #3 is comb/geom in \mathfrak{h}^* .

Irrs J in $\mathcal{O} \iff \lambda \in \mathfrak{h}^*$ characterized by $\mathbb{C}_{\lambda} \subset J(\lambda)^n$.

Same three ideas apply to $G(\mathbb{R})$ representations.

Technical problem: change of rings isn't projective, so $\otimes \leadsto \mathsf{Tor}.$

Parallel problem: $J^n = H^0(n, J) \rightsquigarrow \text{derived functors } H^p(n, J)$.

Conclusion will be: irr $G(\mathbb{R})$ -reps $J \longleftrightarrow \gamma \in \widehat{H}(\mathbb{R})$, some Cartan $H(\mathbb{R}) \subset G(\mathbb{R})$; char by $\mathbb{C}_{\gamma} \subset H^{s}(\mathfrak{n}, J)$.

Next topic: Harish-Chandra's algebraization of rep theory, making possible the program outlined above.

ntroduction

Langlands classification A

(g, A)-modul

71(1), L)-1110u

Cartan subarouns

Langlands classification C

To understand how Harish-Chandra studied reductive group representations, need a serious example.

But there isn't time; so look at these slides on your own!

Use principal series repns for $SL(2,\mathbb{R}) =_{def} G(\mathbb{R})$.

 $G(\mathbb{R}) \curvearrowright \mathbb{R}^2$, so get rep of $G(\mathbb{R})$ on functions on \mathbb{R}^2 :

$$[\rho(g)f](v) = f(g^{-1} \cdot v).$$

Lie algs easier than Lie gps \rightsquigarrow write $\mathfrak{sl}(2,\mathbb{R})$ action, basis

$$D = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

Action on functions on \mathbb{R}^2 is by vector fields:

$$\rho(D)f = -x_1 \frac{\partial f}{\partial x_1} + x_2 \frac{\partial f}{\partial x_2}, \quad \rho(E) = -x_2 \frac{\partial f}{\partial x_1}, \quad \rho(F) = -x_1 \frac{\partial f}{\partial x_2}.$$

General principle: representations on function spaces are reducible \iff exist $G(\mathbb{R})$ -invt differential operators.

Euler deg operator $E = x_1 \frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial x_2}$ commutes with $G(\mathbb{R})$.

Conclusion: interesting reps of $G(\mathbb{R})$ on eigenspaces of E.

David Vogan

(g, K)-modules

For $\nu \in \mathbb{C}$, $\epsilon \in \mathbb{Z}/2\mathbb{Z}$, define

$$W^{\nu,\epsilon} = \{f \colon (\mathbb{R}^2 - 0) \to \mathbb{C} \mid f(tx) = |t|^{-\nu - 1} \operatorname{sgn}(t)^{\epsilon} f(x)\},\$$

functions on the plane homog of degree $-(\nu + 1, \epsilon)$.

 $\nu \rightsquigarrow \nu + 1$ simplifies MANY things later...

Study $W^{\nu,\epsilon}$ by restriction to circle $\{(\cos \theta, \sin \theta)\}$:

$$W^{\nu,\epsilon} \simeq \{w \colon S^1 \to \mathbb{C} \mid w(-s) = (-1)^{\epsilon} w(s)\}, f(r,\theta) = r^{-\nu-1} w(\theta).$$

Compute Lie algebra action in polar coords using

$$\begin{split} \frac{\partial}{\partial x_1} &= -x_2 \frac{\partial}{\partial \theta} + x_1 \frac{\partial}{\partial r}, & \frac{\partial}{\partial x_2} = x_1 \frac{\partial}{\partial \theta} + x_2 \frac{\partial}{\partial r}, \\ \frac{\partial}{\partial r} &= -\nu - 1, & x_1 = \cos \theta, & x_2 = \sin \theta. \end{split}$$

Plug into formulas on preceding slide: get

$$\rho^{\nu,\epsilon}(D) = 2\sin\theta\cos\theta\frac{\partial}{\partial\theta} + (-\cos^2\theta + \sin^2\theta)(\nu + 1),$$

$$\rho^{\nu,\epsilon}(E) = \sin^2\theta\frac{\partial}{\partial\theta} + (-\cos\theta\sin\theta)(\nu + 1),$$

$$\rho^{\nu,\epsilon}(F) = -\cos^2\theta\frac{\partial}{\partial\theta} + (-\cos\theta\sin\theta)(\nu + 1).$$

David Vogan

Introduction

_anglands classification A

 (\mathfrak{g}, K) -modules

 $R(\mathfrak{h}, L)$ -mod

Classification B

Langlands classification C

Have family $\rho^{\nu,\epsilon}$ of reps of $SL(2,\mathbb{R})$ defined on functions on S^1 of homogeneity (or parity) ϵ :

$$\rho^{\nu,\epsilon}(D) = 2\sin\theta\cos\theta\frac{\partial}{\partial\theta} + (-\cos^2\theta + \sin^2\theta)(\nu + 1),$$

$$\rho^{\nu,\epsilon}(E) = \sin^2\theta\frac{\partial}{\partial\theta} + (-\cos\theta\sin\theta)(\nu + 1),$$

$$\rho^{\nu,\epsilon}(F) = -\cos^2\theta\frac{\partial}{\partial\theta} + (-\cos\theta\sin\theta)(\nu + 1).$$

Hard to make sense of. Clear: family of reps analytic (actually linear) in complex parameter ν .

Big idea: see how properties change as function of ν .

Problem: $\{D, E, F\}$ adapted to wt vectors for diagonal Cartan subalgebra; rep $\rho^{\nu,\epsilon}$ has no such wt vectors.

But rotation matrix E - F acts simply by $\partial/\partial\theta$.

Suggests new basis of the complexified Lie algebra:

$$H = -i(E - F), \quad X = \frac{1}{2}(D + iE + iF), \quad Y = \frac{1}{2}(D - iE - iF).$$

$$\rho^{\nu,\epsilon}(H) = \frac{1}{i} \frac{\partial}{\partial \theta}, \ \rho^{\nu,\epsilon}(X) = \frac{e^{2i\theta}}{2i} \left(\frac{\partial}{\partial \theta} + i(\nu+1) \right), \ \rho^{\nu,\epsilon}(Y) = \frac{-e^{-2i\theta}}{2i} \left(\frac{\partial}{\partial \theta} + i(\nu+1) \right).$$

David Vogan

(g, K)-modules

$$\rho^{\nu,\epsilon}(H) = \frac{1}{i} \frac{\partial}{\partial \theta}, \ \rho^{\nu,\epsilon}(X) = \frac{e^{2i\theta}}{2i} \left(\frac{\partial}{\partial \theta} + i(\nu+1) \right), \ \rho^{\nu,\epsilon}(Y) = \frac{-e^{-2i\theta}}{2i} \left(\frac{\partial}{\partial \theta} + i(\nu+1) \right).$$

These ops act simply on basis $w_m(\cos \theta, \sin \theta) = e^{im\theta}$:

$$\rho^{\nu,\epsilon}(H)w_{m} = mw_{m},$$

$$\rho^{\nu,\epsilon}(X)w_{m} = \frac{1}{2}(m+\nu+1)w_{m+2},$$

$$\rho^{\nu,\epsilon}(Y)w_{m} = \frac{1}{2}(-m+\nu+1)w_{m-2}.$$

Suggests reasonable function space to consider:

$$W^{\nu,\epsilon,K(\mathbb{R})} = \text{fns homog of deg } (\nu,\epsilon), \text{ finite under rotation}$$

= span({ $w_m \mid m \equiv \epsilon \pmod{2}$ }).

 $W^{\nu,\epsilon,K(\mathbb{R})}$ has beautiful rep of \mathfrak{g} : irr for most ν , easy submods otherwise. Not preserved by $G(\mathbb{R}) = SL(2,\mathbb{R})$: $\exp(A) \in G(\mathbb{R}) \leadsto \sum A^k/k!$: $A^k \curvearrowright W^{\nu,\epsilon,K(\mathbb{R})}$, sum not.

Introduction

anglands

 (\mathfrak{g}, K) -modules

 $R(\mathfrak{h}, L)$ -mod

Langlands classification B

Cartan subgroups

Langlands classification C

$$W^{\nu,\epsilon,\infty} = \{ f \in C^{\infty}(\mathbb{R}^2 - 0) \mid f \text{ homog of deg } -(\nu + 1, \epsilon) \} :$$

what are the closed $G(\mathbb{R})$ -invt subspaces...?

Found nice subspace $W^{\nu,\epsilon,K(\mathbb{R})}$, explicit basis, explicit action of Lie algebra \leadsto easy to describe \mathfrak{g} —invt subspaces.

Theorem (Harish-Chandra) There is one-to-one corr

closed
$$G(\mathbb{R})$$
-invt $S\subset W^{
u,\epsilon,\infty} \leftrightsquigarrow \mathfrak{g}(\mathbb{R})$ -invt $S^K\subset W^{
u,\epsilon,K}$

 $S \rightsquigarrow K$ -finite vectors in S, $S^K \rightsquigarrow \overline{S^K}$.

Content of thm: closure carries g-invt to G-invt.

Why this isn't obvious: SO(2) acting by translation on $C^{\infty}(S^1)$. Lie alg acts by $\frac{d}{d\theta}$, so closed subspace

$$E = \{ f \in C^{\infty}(S^1) \mid f(\cos \theta, \sin \theta) = 0, \theta \in (-\pi/2, \pi/2) + 2\pi \mathbb{Z} \}$$

is preserved by $\mathfrak{so}(2)$; *not* preserved by rotation.

Reason: Taylor series for in $f \in E$ doesn't converge to f.

ntroduction

Langlands classification A

 (\mathfrak{g}, K) -modules

H(t), L)-m

classification B

Langlands

 $\theta \colon G(\mathbb{R}) \to G(\mathbb{R})$ Cartan involution, $\mathfrak{s}(\mathbb{R}) = \mathfrak{g}(\mathbb{R})^{-\theta}$.

 $K(\mathbb{R}) = G(\mathbb{R})^{\theta}$ compact subgroup.

Recall polar decomposition $G(\mathbb{R}) = K(\mathbb{R}) \times \exp(\mathfrak{s}_0)$.

Nice structures on $G(\mathbb{R})$ come from nice structures on $K(\mathbb{R})$ by solving differential equations along S.

 (ρ, W) rep on complete loc cvx W; had smaller space $W^{\infty} = \{ w \in W \mid G(\mathbb{R}) \to W, \ g \mapsto \rho(g)w \text{ smooth} \}.$

Similarly define two more smaller complete loc cvx spaces $W^{K(\mathbb{R})} = \{ w \in W \mid \operatorname{dim} \operatorname{span}(\rho(K(\mathbb{R}))w) < \infty \},$

$$W^{K(\mathbb{R}),\infty} = \{ w \in W^{\infty} \mid \dim \operatorname{span}(\rho(K(\mathbb{R}))w) < \infty \}$$

Definition. The Harish-Chandra-module of W is $W^{K(\mathbb{R}),\infty}$: representation of Lie algebra $\mathfrak{g}(\mathbb{R})$ and of group $K(\mathbb{R})$.

Easy (two slides below!) to define $(\mathfrak{g}(\mathbb{R}), K(\mathbb{R}))$ -modules.

(g, K)-modules

classification B

Langlands classification C

Your friend $K(\mathbb{R})$

 $G(\mathbb{R})$ reductive $\supset K(\mathbb{R})$ max cpt, $\mathfrak{Z}(\mathfrak{g}) = U(\mathfrak{g})^{Ad(G)}$.

Recall (π, V) is *quasisimple* if $\pi^{\infty}(z) = \text{scalar}, z \in \mathfrak{Z}(\mathfrak{g})$.

Theorem (Segal, Harish-Chandra)

- 1. Any irreducible $(\mathfrak{g}(\mathbb{R}), K(\mathbb{R}))$ -module is quasisimple.
- 2. Any irreducible unitary rep of $G(\mathbb{R})$ is quasisimple.
- 3. Suppose V quasisimple rep of $G(\mathbb{R})$. Then $W\mapsto W^{K(\mathbb{R}),\infty}$ is bijection between subrepresentations

(closed
$$W \subset V$$
) \leftrightarrow ($W^{K(\mathbb{R}),\infty} \subset V^{K(\mathbb{R}),\infty}$).

4. (irreducible quasisimple reps of $G(\mathbb{R})$) \leadsto (irreducible $(\mathfrak{g}(\mathbb{R}), K(\mathbb{R}))$ -modules), $W_{\pi} \leadsto W_{\pi}^{K(\mathbb{R}), \infty}$ is surjective.

Idea of proof: $G(\mathbb{R})/K(\mathbb{R}) \simeq \mathfrak{s}_0$, vector space. Describe anything analytic on $G(\mathbb{R})$ by Taylor expansion along $K(\mathbb{R})$.

Definition. An $(\mathfrak{h}(\mathbb{R}), L(\mathbb{R}))$ -module is complex vector space W, with reps of $\mathfrak{h}(\mathbb{R})$ and of $L(\mathbb{R})$, subject to

- 1. each $w \in W$ belongs to fin-diml $L(\mathbb{R})$ -invt W_0 , so that action of $L(\mathbb{R})$ on W_0 continuous (hence smooth);
- 2. differential of $L(\mathbb{R})$ action is $l(\mathbb{R})$ action;
- 3. $\forall k \in L(\mathbb{R}), Z \in \mathfrak{h}(\mathbb{R}), w \in W, k \cdot (Z \cdot (k^{-1} \cdot w)) = [Ad(k)(Z)] \cdot w.$

Condition (3) is automatic if $L(\mathbb{R})$ connected.

Write $\mathcal{M}(\mathfrak{h}(\mathbb{R}), L(\mathbb{R}))$ for category of $(\mathfrak{h}(\mathbb{R}), L(\mathbb{R}))$ -modules.

Proposition. Taking smooth $K(\mathbb{R})$ -fin vecs is functor

(reps of $G(\mathbb{R})$ on complete loc cvx W)

$$\longrightarrow$$
 ($\mathfrak{g}(\mathbb{R}), K(\mathbb{R})$)-modules $W^{K(\mathbb{R}),\infty}$.

But it's easier to use reps of complex Lie algebras...

Introduction

Langlands

 $[\mathfrak{g}, K)$ -modules

 $R(\mathfrak{h}, L)$ -mod Langlands

Cartan subgroups

Langlands classification C

$$\begin{aligned} & \mathfrak{h} = \mathfrak{h}(\mathbb{C}) =_{\mathsf{def}} \mathfrak{h}(\mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C} \\ & = & \{X + iY \mid X, Y \in \mathfrak{h}(\mathbb{R}).\} \end{aligned}$$

complexification of $\mathfrak{h}(\mathbb{R})$.

Proposition. Representation (π_0, V) of $\mathfrak{h}(\mathbb{R}) \iff$ representation (π_1, V) of $\mathfrak{h}(\mathbb{C})$:

$$\pi_1(X+iY)=\pi_0(X)+i\pi_0(Y), \qquad \pi_0(X)=\pi_1(X).$$

Convenient to express as modules for an algebra:

Proposition. Reps of real Lie alg $\mathfrak{h}(\mathbb{R}) \longleftrightarrow \text{modules}$ for complex enveloping algebra $U(\mathfrak{h})$.

Seek to extend this to $(\mathfrak{h}(\mathbb{R}), L(\mathbb{R}))$ -modules.

ntroduction

Langlands classification A

(g, K)-module

 $R(\mathfrak{h}, L)$ -mod

classification B

Langlands

$R(\mathfrak{h}, L)$ -mod

Complexification also works for compact groups...

real compact $L(\mathbb{R}) \subset U(n) \rightsquigarrow \text{complex}$ reductive alg

 $L = L(\mathbb{C}) =_{\mathsf{def}} L(\mathbb{R}) \exp(i\mathfrak{l}(\mathbb{R})) \subset GL(n,\mathbb{C})$

complexification of $L(\mathbb{R})$.

Coordinate-free definition:

reg fns on $L(\mathbb{C}) = L(\mathbb{R})$ -finite \mathbb{C} -valued fns on $L(\mathbb{R})$

Proposition. Fin-diml continuous (π_0, V) of $L(\mathbb{R}) \longleftrightarrow$ fin-diml algebraic representation (π_1, V) of $L(\mathbb{C})$:

$$\pi_1(I \exp(iY)) = \pi_0(I) \exp(id\pi_0(Y)), \qquad \pi_0(I) = \pi_1(I).$$

Identification $\pi_0 \leftrightarrow \pi_1$ is perfect; write π for both.

 $L(\mathbb{R})$ -finite cont reps of $L(\mathbb{R})$ = algebraic reps of $L(\mathbb{C})$.

Setting: $\mathfrak{h} \supset \mathfrak{l}$ complex Lie algebras, L complex algebraic acting on \mathfrak{h} by Lie algebra automorphisms Ad.

Definition. An (\mathfrak{h}, L) -module is complex vector space W, with reps of \mathfrak{h} and of L, subject to

- L action is algebraic (hence smooth);
- 2. differential of L action is I action;
- 3. For $k \in L, Z \in \mathfrak{h}, w \in W$, $k \cdot (Z \cdot (k^{-1} \cdot w)) = [Ad(k)(Z)] \cdot w$.

Write $\mathcal{M}(\mathfrak{h}, L)$ for category of (\mathfrak{h}, L) -modules.

Proposition. Taking smooth *K*-finite vecs is functor

 $W \in (\text{reps of } G(\mathbb{R}) \text{ on complete locally convex space})$

$$\longrightarrow W^{K,\infty} \in \mathcal{M}(\mathfrak{g},K)$$

.

Introduction

Langlands

 (\mathfrak{g}, K) -module

 $R(\mathfrak{h}, L)$ -mod

classification B

Langlands classification C

Category of reps of $\mathfrak{h}(\mathbb{R}) = \text{category of } U(\mathfrak{h}) - \text{modules}$.

Seek parallel for locally finite reps of compact $L(\mathbb{R})$:

 $R(L) = \text{conv alg of } \mathbb{C}\text{-valued } L\text{-finite msres on } L(\mathbb{R})$

$$\simeq_{(\mathsf{Peter\text{-}Weyl})} \left[\sum_{(\mu, \mathcal{E}_\mu) \in \widehat{\mathcal{L}}} \mathsf{End}(\mathcal{E}_\mu)
ight]$$

 $1 \notin R(L)$ if $L(\mathbb{R})$ is infinite: convolution identity is point measure at $e \in L(\mathbb{R})$, not L-finite.

$$\alpha \subset \widehat{L}$$
 finite $\leadsto 1_{\alpha} =_{\mathsf{def}} \sum_{\mu \in \alpha} \mathsf{Id}_{\mu} \in R(L)$.

Elements $\mathbf{1}_{\alpha}$ are approximate identity: $\forall r \in R(L) \ \exists \alpha(r)$ finite so $\mathbf{1}_{\beta} \cdot r = r \cdot \mathbf{1}_{\beta} = r$ if $\beta \supset \alpha(r)$.

R(L)-module M is approximately unital if $\forall m \in M \ \exists \alpha(m)$ finite so $\mathbf{1}_{\beta} \cdot m = m$ if $\beta \supset \alpha(m)$.

Alg reps of $L = \text{approximately unital } R(L(\mathbb{R})) \text{-modules}.$

R-mod =_{def} category of approximately unital R-modules.

Introduction

_anglands classification *A*

 (\mathfrak{g}, K) -module

 $R(\mathfrak{h}, L)$ -mod

classification B

Cartan Subgroup

Langiands classification C

Definition. The Hecke algebra $R(\mathfrak{h}, L)$ is

$$R(\mathfrak{h},L)=U(\mathfrak{h})\otimes_{U(\mathfrak{l})}R(L)$$

 \simeq [conv alg of *L*-finite $U(\mathfrak{h})$ -valued msres on $L(\mathbb{R})]/U(\mathfrak{l})$

 $R(\mathfrak{h}, L)$ inherits approx identity from subalgebra R(L).

Proposition. $\mathcal{M}(\mathfrak{h}, L) = R(\mathfrak{h}, L)$ -mod: (\mathfrak{h}, L) modules are approximately unital modules for Hecke algebra $R(\mathfrak{h}, L)$.

Immediate corollary: $\mathcal{M}(\mathfrak{h}, L)$ has projective resolutions, so derived functors...

Introduction

Langlands classification A

 (\mathfrak{g}, K) -module

 $R(\mathfrak{h}, L)$ -mod

classification B

. . . .

anglands classification C

$$(H(\mathbb{R}), \gamma)/(G(\mathbb{R}) \text{ conjugacy}) \longleftrightarrow J(H(\mathbb{R}), \gamma)$$
 with

- 1. $H(\mathbb{R}) \subset G(\mathbb{R})$ is a Cartan subgroup, $\gamma \in \widehat{H}(\mathbb{R})$ a character;
- 2. γ nontrivial on each compact imaginary simple coroot; and
- 3. γ nontrivial on each simple real coroot.

Equivalently,

$$\widehat{G(\mathbb{R})} = \coprod_{H(\mathbb{R})/G(\mathbb{R})} \widehat{H(\mathbb{R})}_{\mathsf{reg}} / W(G(\mathbb{R}), H(\mathbb{R})).$$

- (2) is the "regularity" condition in Langlands classification for K;
- (3) excludes the reducible tempered principal series of $SL(2,\mathbb{R})$ $J(H(\mathbb{R}),\gamma)$ characterized by occurrence of $\gamma-\rho$ in $H(\mathbb{R})$ action

Remaining lies: omitted translate of γ by ρ , choice of pos imag roots.

Next time: what $H(\mathbb{R})$ and $W(G(\mathbb{R}), H(\mathbb{R}))$ look like.

on $H^s(\mathfrak{n}, J)$ (some Borel subalgebra $\mathfrak{b} = \mathfrak{h} + \mathfrak{n}$).

ntroduction

Langlands classification A

 (\mathfrak{g}, K) -module

R(h, L)-mod

classification B

Langlands

 $\rightsquigarrow W_{\pi}^{K,\infty}$ irr (\mathfrak{g},K) -module of K-finite smooth vecs.

 $\widehat{G(\mathbb{R})} =_{\mathsf{def}} \text{ infinitesimal equiv classes of irr quasisimple, so } \widehat{G(\mathbb{R})} \simeq_{\mathsf{def}} \text{ simple } R(\mathfrak{g}, K) \text{-modules}.$

Langlands classification proceeds by category $\mathcal O$ strategy:

- 1. construct (complicated) $R(\mathfrak{g}, K)$ -modules from (simple) $R(\mathfrak{h}, H \cap K)$ -modules by change-of-rings functors;
- prove exhaustion using universality properties involving Lie algebra cohomology.

If you've read Langlands, this summary may look absurd. But...

Change-of-rings includes parabolic induction.

Lie algebra cohom can come from asymptotic exp of matrix coeffs.

Feel better?

Introduction

Langlands classification A

Langlands

classification B

Cartan subgroups

_anglands classification C

END OF LECTURE ONE

David Vogan

Introduction

Langlands classification A

(g, K)-module:

 $R(\mathfrak{h}, L)$ -m

Langlands classification B

Cartan subgroups

Langlands classification C

Your friend $K(\mathbb{R})$

BEGINNING OF LECTURE TWO

To make precise/concrete, need structure of $H(\mathbb{R})$.

Assume (replace $H(\mathbb{R})$ by conjugate) $\theta(H(\mathbb{R})) = H(\mathbb{R})$.

Set
$$T(\mathbb{R}) = H(\mathbb{R})^{\theta} = H(\mathbb{R}) \cap K(\mathbb{R})$$
 compact

Set $\mathfrak{a}_0 = \mathfrak{h}(\mathbb{R})^{-\theta}$, $A = \exp(\mathfrak{a}_0)$ vector group.

$$H(\mathbb{R}) = T(\mathbb{R}) \times A$$

$$\widehat{H(\mathbb{R})} = (\text{chars of } T(\mathbb{R})) \times (\mathfrak{a}^*)$$

$$= (\text{nearly lattice}) \times (\text{complex})$$

 $G(\mathbb{R})$ = countable union of complex vector spaces.

= (nearly lattice) \times (complex vector space).

Introduction

Langlands classification A

g, Nj-modu

. . .

Cartan subgroups

Langlands

D(x 1)

Langlands

Cartan subgroups

Langlands classification C

Your friend $K(\mathbb{R})$

```
\operatorname{Sp}(2n,\mathbb{R})= linear maps of 2n-dimensional real E preserving nondegenerate skew-symm bilinear form \omega.
```

1st construction: U n-diml real $E = U \oplus U^*$,

$$\omega((u_1,\lambda_1),(u_2,\lambda_2))=\lambda_1(u_2)-\lambda_2(u_1).$$

Get
$$GL(U) \hookrightarrow Sp(E)$$
, $g \cdot (u, \lambda) = (g \cdot u, {}^t g^{-1} \cdot \lambda)$.

$$ightharpoonup$$
 Cartan subgp $H_{n,0,0}(\mathbb{R})=\mathsf{GL}(1,\mathbb{R})^n\subset\mathsf{GL}(n,\mathbb{R})\subset\mathsf{Sp}(2n,\mathbb{R}).$

2nd construction: F n-diml complex with nondeg Herm form μ , $\omega(f_1, f_2) = \text{Im}(\mu(f_1, f_2))$ (on real space $F|_{\mathbb{R}}$).

Get unitary group $U(F) \hookrightarrow \operatorname{Sp}(F|_{\mathbb{R}})$.

$$ightharpoonup$$
 Cartan $H_{0,0,n}(\mathbb{R})=U(1)^n\subset U(p,q)\subset \operatorname{Sp}(2n,\mathbb{R}).$

3rd construction: n=2m even, V m-diml complex, $\omega_{\mathbb{C}}$ on

$$F = V \oplus V^*$$
 as in 1st, $\omega_{\mathbb{R}} = \mathsf{Re}(\omega_{\mathbb{C}})$ on $F|_{\mathbb{R}}$.

$$\underbrace{\mathsf{GL}(V) \hookrightarrow \mathsf{Sp}(F)}_{\mathsf{complex algebraic}} \hookrightarrow \underbrace{\mathsf{Sp}(F|_{\mathbb{R}})}_{\mathsf{real}}.$$

$$\longrightarrow$$
 Cartan $H_{0,m,0} = GL(1,\mathbb{C})^m \subset GL(m,\mathbb{C}) \subset Sp(2m,\mathbb{C}) \subset Sp(4m,\mathbb{R})$.

Any Cartan:
$$H_{a,b,c} \simeq (\mathbb{R}^{\times})^a \times (\mathbb{C}^{\times})^b \times U(1)^c \quad (n = a + 2b + c).$$

$$T_{a,b,c} = \{\pm 1\}^a \times U(1)^{b+c}, \qquad A_{a,b,c} = \mathbb{R}^{a+b}$$

Introduction

_anglands classification

g, K)-moal

71(t), L)-11100

Cartan subgroups

Langlands

Your friend $K(\mathbb{R})$

 $g \in G(\mathbb{C}) = \operatorname{Sp}(2n, \mathbb{C})$ (complex reductive) has 2n eigenvalues $((z_1, z_1^{-1}), (z_2, z_2^{-1}), \dots, (z_n, z_n^{-1})).$

g usually conjugate to

$$(z_1,\ldots,z_n)\in GL(1,\mathbb{C})^n=H(\mathbb{C})\subset Sp(2n,\mathbb{C}).$$

 (z_1, \ldots, z_n) only determined up to permutation, inversions.

 $H(\mathbb{C})$ is unique conjugacy class of Cartan in $\operatorname{Sp}(2n,\mathbb{C})$ Its Weyl group

 $W_{\mathbb{C}} = W(G(\mathbb{C}), H(\mathbb{C})) = N_{G(\mathbb{C})}(H(\mathbb{C}))/H(\mathbb{C}) = W(BC_n)$ is called the *n*th hyperoctahedral group.

$$W(BC_n) = S_n \rtimes (\pm 1)^n = \text{permutations and inversions.}$$

Real Cartan subgroups \longleftrightarrow reality conditions on eigenvalues. Each real Weyl group is a subgroup of $W(BC_n)$.

$$((z_1,z_1^{-1}),(z_2,z_2^{-1}),\ldots,(z_n,z_n^{-1}))$$

permuted by complex conjugation.

Ways this happens \longleftrightarrow expressions n = a + 2b + c:

- 1. $z_i = \overline{z}_i$, $(1 \le i \le a)$;
- 2. $z_{a+2i-1} = \overline{z_{a+2i}}$, $(1 \le j \le b)$; and
- 3. $z_{a+2b+k} = \overline{z_{a+2b+k}}^{-1}$, (1 < k < c).

Conditions describe elts of $H_{a,b,c}(\mathbb{R}) = (\mathbb{R}^{\times})^a \times (\mathbb{C}^{\times})^b \times U(1)^c$.

$$\textit{W}_{\textit{a},\textit{b},\textit{c}} = \textit{W}(\textit{G}(\mathbb{R}),\textit{H}_{\textit{a},\textit{b},\textit{c}}(\mathbb{R})) = \textit{W}(\textit{BC}_{\textit{a}}) \times [\textit{W}(\textit{BC}_{\textit{b}}) \rtimes (\pm 1)^{\textit{b}}] \times \textit{S}_{\textit{c}}.$$

Here $W(BC_b)$ acts simultaneously on $(z_{a+2j-1}), (\overline{z_{a+2j-1}})$.

$$(\pm 1)^b$$
 interchanges some pairs $(z_{a+2j-1}, \overline{z_{a+2j-1}})$.

It's perhaps a surprise that the last factor is S_c (permutations) and not $W(BC_c)$ (which includes inversions).

Inverting some of the z_{a+2b+k} gives a group element conjugate by $G(\mathbb{C})$ but not by $G(\mathbb{R})$ (stably conjugate).

Distinction between conjugacy and stable conjugacy is source of multi-element L-packets in the Langlands classification.

David Vogan

Introduction

Langlands

 $[\mathfrak{g},K)$ -module

 $R(\mathfrak{h}, L)$ -

classification B

Cartan subgroups

Langlands classification C

Langlands classification

Theorem (Langlands)

$$\widehat{\mathsf{Sp}(2n,\mathbb{R})} = \coprod_{a+2b+c=n} \widehat{H_{a,b,c}(\mathbb{R})_{\mathsf{reg}}} / W_{a,b,c}.$$

$$\widehat{H_{a,b,c}(\mathbb{R})} \longleftrightarrow \gamma \in \mathbb{C}^n$$
, $\epsilon \in (\mathbb{Z}/2\mathbb{Z})^a$, with

- 1. $\gamma_{a+2j-1} \gamma_{a+2j} \in \mathbb{Z}$, $1 \le j \le b$, and
- 2. $\gamma_{a+2b+k} \in \mathbb{Z}$, $1 \le k \le c$.

Write γ as sum of continuous part (character of vector group A)

$$\nu = (\gamma_1, \dots, \gamma_a, \frac{\gamma_{a+1} + \gamma_{a+2}}{2}, \frac{\gamma_{a+1} + \gamma_{a+2}}{2}, \dots, \frac{\gamma_{a+2b-1} + \gamma_{a+2b}}{2}, \frac{\gamma_{a+2b-1} + \gamma_{a+2b}}{2}, 0, \dots, 0)$$

$$\in \mathbb{C}^{a+b} \subset \mathbb{C}^n$$

and discrete part (character of $T(\mathbb{R})_0$)

$$\begin{split} & \boldsymbol{\lambda} = \left(0,\dots,0,\frac{\gamma_{a+1}-\gamma_{a+2}}{2},\frac{-\gamma_{a+1}+\gamma_{a+2}}{2},\dots,\\ & \frac{\gamma_{a+2b-1}-\gamma_{a+2b}}{2},\frac{-\gamma_{a+2b-1}+\gamma_{a+2b}}{2},\gamma_{a+2b+1},\dots,\gamma_{a+2b+c}\right) \\ & \in \mathbb{Z}^{b+c} \subset \left(\frac{1}{2}\mathbb{Z}\right)^{n}. \end{split}$$

David Vogan

Introduction

Langlands classification A

 $[\mathfrak{g},K)$ -module

 $R(\mathfrak{h}, L)$ -n

classification B

Cartan subgroups

Langlands classification C

$$\gamma = (\lambda, \nu) \in \widehat{H(\mathbb{R})}_{\mathsf{reg}}, \quad (\lambda \in \widehat{\mathcal{T}(\mathbb{R})}, \nu \in \mathfrak{a}^*), \quad V = J(\gamma) \in \widehat{G(\mathbb{R})}.$$

- 1. $\gamma^h = (\lambda, -\overline{\nu}); \quad \gamma \text{ unitary} \iff \gamma = \gamma^h \iff \nu \in i\mathfrak{a}_0^*.$
- 2. $V^h \simeq J(\gamma^h)$; γ unitary $\iff J(\gamma)$ tempered.
- 3. $V \text{ Herm} \iff V \simeq V^h \iff \gamma^h \in W(G(\mathbb{R}), H(\mathbb{R})) \cdot \gamma$.

Picture: $V \mapsto V^h$ is a complex conjugation on $\widehat{G}(\mathbb{R})$.

Hermitian reps = real points.

Easy real pts $\Longleftrightarrow \nu$ purely imaginary \Longleftrightarrow tempered reps.

Difficult real pts $\longleftrightarrow -\overline{\nu} = w \cdot \nu \quad (w \in W(G(\mathbb{R}), H(\mathbb{R}))^{\lambda}).$

Last cond is $\nu \in (i\mathfrak{a}_0^*)^{\mathsf{w}} + (\mathfrak{a}_0^*)^{-\mathsf{w}}$, real vec space of dimension dim A.

Corollary (Knapp-Vogan). Each $V \in \widehat{G(\mathbb{R})}_h$ is unitarily induced from $V_L \otimes$ (unitary char) $\in \widehat{L(\mathbb{R})}_h$, with ν_L real.

introduction

Langlands classification

.(1), -) ..

classification B

Langlands classification C

$$\nu_{a,b,c} = (z_1,\ldots,z_a,w_1/2,w_1/2,\ldots,w_b/2,w_b/2,0,\ldots,0),$$

with z_i and w_j complex; using the Weyl group we may assume z_i and w_i have nonnegative real part.

Rearrange these with decreasing real part as

$$\nu = (\nu_1, \cdots, \nu_n).$$

Then ν is a leading term in asymptotic expansions of matrix coefficients of $J(\lambda, \nu)$.

Discrete part of a Langlands param for $Sp(2n, \mathbb{R})$ is

$$\lambda_{a,b,c} = (0,\ldots,0,\ell_1/2,-\ell_1/2,\ldots,\ell_b/2,-\ell_b/2,n_1,\ldots,n_c),$$

with ℓ_j and n_k integers.

Rearrange these half integers in decreasing order as

$$\lambda = (\lambda_1 \geq \cdots \geq \lambda_n).$$

Then λ is close to the highest weight of the lowest representation of U(n) appearing in $J(\lambda, \nu)$.

David Vogan

Introduction

Langlands

g, A j-illouu

H(0, L)

Langlands classification B

Cartan subgroup

Langlands classification C

To make this statement precise and more general, need to look closely at $\widehat{\mathcal{K}(\mathbb{R})}$.

Reasons you don't know this already it's worth doing here.

- 1. $K(\mathbb{R})$ is disconnected; Lie theorists are too lazy to talk about disconnected groups in grad courses.
- 2. Indexing $\widehat{K}(\mathbb{R})$ by highest weights is wrongheaded, persisting only for reasons cited in (1).
- 3. Construction of ρ_K covers that we'll use parallels details that I omitted from Langlands classification for reasons cited in (1).

Introduction

Langlands classification A

(g, K)-modu

H(I), L)-III

Langlands classification B

Cartan subgroups

Langlands classification C

Fix pos roots $\Delta_{\kappa}^+ \subset \Delta\left(\mathfrak{k}, T_{\kappa,0}(\mathbb{R})\right) \iff$ Borel $\mathfrak{b}_{\kappa} = \mathfrak{t}_{\kappa} + \mathfrak{n}_{\kappa}$.

Set $T_K(\mathbb{R}) = \operatorname{Norm}_{K(\mathbb{R})}(\mathfrak{b}_K)$, a large Cartan in $K(\mathbb{R})$.

OR fix Borel subgp $B_{K,0} \subset K_0$; define Borel subgp of K $B_K = N_K(B_{K,0})$. Then $B_K \cap K(\mathbb{R}) = T_K(\mathbb{R}) = \text{large Cartan in } K(\mathbb{R}), B_K = T_K N_K$.

 $K(\mathbb{R})$ can be disconnected, exactly reflected in $T_K(\mathbb{R})$:

$$T_{\mathcal{K}}(\mathbb{R})/T_{\mathcal{K},0}(\mathbb{R})\simeq \mathcal{K}(\mathbb{R})/\mathcal{K}_0(\mathbb{R}).$$

Highest weight theory makes bijection

$$\widehat{K}(\mathbb{R}) \longleftrightarrow$$
 irreducible dominant reps of $T_K(\mathbb{R})$.

For harmonic analysis, not the best parametrization.

Weyl dimension formula and Weyl character formula both use highest weight shifted by ρ_K .

Introduction

Langlands classification A

(g, K)-module

..(,, _)

classification B

Langlands classification C

Easy exercise: *F*-cover is a contravariant functor.

Example. $F = \mu_n = n$ th roots of 1, $1 \to \mu_n \to \mathbb{C}^{\times} \stackrel{n \text{ th power}}{\longrightarrow} \mathbb{C}^{\times} \to 1$.

Any character $\gamma \colon H \to \mathbb{C}^{\times} \leadsto n$ th root of γ cover.

$$1 \to \mu_n \to \widetilde{H}_{\gamma/n} \to H \to 1, \quad \widetilde{H}_{\gamma/n} = \{(h,z) \in H \times \mathbb{C}^{\times} \mid \gamma(h) = z^n\}.$$

Representation τ of $\widetilde{H}_{\gamma/n}$ called genuine if $\tau(\omega) = \omega I \quad (\omega \in \mu_n)$.

 $\widetilde{H}_{\gamma/n}$ has genuine character γ/n : $(\gamma/n)(h,z)=z$.

Proposition. $\otimes (\gamma/n)$ is a bijection $\widehat{H} \to (\widetilde{H}_{\gamma/n})_{\text{genuine}}^{\widehat{}}$.

General philosophical reason we need these: measures on manifold M \longleftrightarrow line bundle $\bigwedge^{\dim M} T^*(M)$ (densities).

Hilbert spaces on $M \leftrightarrow$ square roots of measures (half densities).

$$M = G/H$$
: $\bigwedge^{\dim M} T^*(M) \iff \operatorname{char} \gamma \in \widehat{H} \quad (\gamma(h) = \det(\operatorname{Ad}(h)|_{\mathfrak{g}/\mathfrak{h}})^{-1}).$

half densities on $G/H \leftrightarrow$ character $\gamma/2$.

Introduction

Langlands classification

3, 11 J-1110uui

Langlands

Cartan subgroups

Langlands classification C

Get one diml character $2\rho_K \in \widehat{T_K}$, $2\rho_K(t) = \det(Ad(t)|_{\mathfrak{b}_K}$.

$$\rightsquigarrow$$
 (square root of $2\rho_K$) = ρ_K cover $\widetilde{T_K}_{,\rho_K}$

Proposition. $\otimes \rho_K$ is bijection $\widehat{T_K} \to (\widetilde{T_K}, \rho_K)_{\text{genuine}}^{\widehat{}}$; sends (irr dom reps of T_K) \longleftrightarrow (irr dom genuine regular reps of $\widetilde{T_K}, \rho_K$).

Corollary. There is a bijection

$$\widehat{K} \longleftrightarrow (\text{irr dom regular reps of } \widetilde{T}_{K,\rho_K}), \quad J_K(\gamma) \longleftrightarrow \gamma.$$

Suppose $\gamma_0 \in \mathfrak{t}^*$ is a weight of γ . Then

$$\dim(J_{\mathcal{K}}(\gamma)) = \dim(\gamma) \cdot \prod_{\alpha \in \Delta_{\mathcal{K}}^{+}} \frac{\langle \gamma_{0}, \alpha^{\vee} \rangle}{\langle \rho_{\mathcal{K}}, \alpha^{\vee} \rangle}.$$

This is a formula for the Plancherel measure for $K(\mathbb{R})$.

IIIIIOUUGIIOI

Langlands classification A

(g, K)-module

Langlands

Cartan subgroups

Langlands classification C

Define $H_f(\mathbb{R}) = \text{cent in } G(\mathbb{R})$ of $T_{K,0}$, fundamental Cartan subgroup of $G(\mathbb{R})$.

Suppose γ irr dom genuine regular rep of \widetilde{T}_{K,ρ_K} , so $J_K(\gamma) \in \widehat{K}$ has highest weight $\gamma - \rho_K$.

Fix $\gamma_1 \in i\mathfrak{t}_K(\mathbb{R})^*$ weight of γ .

Fix θ -stable pos $\Delta_G^+ \subset \Delta(\mathfrak{g}, \mathfrak{h}_f)$ so $\gamma_1 + \rho_K$ dom for Δ_G^+ .

Define $2\rho_G^{\vee} = \text{(sum of positive coroots for } \Delta_G^+) \in i\mathfrak{t}_{\mathcal{K}}(\mathbb{R}).$

Set height($J_K(\gamma)$) = height(γ) = $\langle \gamma_1 + \rho_K, 2\rho^{\vee} \rangle$.

Lowest K-types of $V \in \widehat{G}(\mathbb{R})$ are $J_K(\gamma)$ of minimal height.

Theorem. Any lowest K-type $J_K(\gamma)$ of an irr rep $J(\lambda, \nu)$ determines the discrete Langlands parameter λ .

Assume $\gamma + \rho_K - \rho_G \in (\widetilde{T}_{f,\rho})_{\text{genuine}}^{\widehat{}}$ is dom reg for Δ_G^+ . Then $H = H_f$, and $\lambda = \gamma + \rho_K - \rho_G$.

Recall that Δ_G^+ chosen to make $\gamma + \rho_K$ dominant. So hypothesis on $\gamma + \rho_K - \rho_G$ is always nearly true.

David Vogan

Introduction

Langlands classification A

 (\mathfrak{g}, K) -modul

 $H(\mathfrak{h}, L)$ -

Langlands classification B

Cartan subgroups

Langlands classification C

(g, K)-module

 $H(\mathfrak{h}, L)$

classification B

L L L

classification C

Your friend $K(\mathbb{R})$

Fix $G(\mathbb{R})$ conn; assume $T_K(\mathbb{R}) \subset K(\mathbb{R})$ Cartan in $G(\mathbb{R})$.

Each $\Delta_G^+ \supset \Delta_K^+$ pos roots for T_K defines Weyl chamber

$$C_{\Delta_G^*} = \{ \gamma \in i\mathfrak{t}_K(\mathbb{R})^* \mid \gamma(\alpha^{\vee}) \geq 0, \quad \alpha \in \Delta_G^+ \},$$

closed convex cone in $i\mathfrak{t}_{\mathcal{K}}(\mathbb{R})^*$.

Theorem (Hecht-Schmid). Suppose $\lambda \in (\widetilde{T}_{K,\rho})_{\text{genuine}}^{\widehat{}}$ is dom reg for Δ_G^+ : HC param for a discrete series rep $J(\lambda)$.

- 1. Unique lowest K-type of $J(\lambda)$ is $J_K(\lambda + \rho_G \rho_K)$.
- 2. Every *K*-type of $J(\lambda)$ is of the form $J_K(\lambda + \rho_G \rho_K + S)$, $S = \text{sum of roots in } \Delta_G^+ \Delta_K^+$.

https://ldrv.ms/u/s!AuIZlbpNWacjgXYaZG6gUJimFt62

has some pictures for $Sp(4,\mathbb{R})$