# K-theory of $C^*$ -algebras

Peter Hochs

Radboud University

RTNCG language course 18 June 2021

Peter Hochs (RU)

K-theory of  $C^*$ -algebras

18 June 0 / 41

▲ □ ▶ ▲ □ ▶ ▲ □



2 K-theory of  $C^*$ -algebras



#### The higher index

### Overview

- Idea: study singular (e.g. non-Hausdorff) topological spaces through noncommutative  $C^*$ -algebras "associated to them".
- To do this, generalise tools from algebraic topology to  $C^*$ -algebras.
- This works well for *K*-theory.

( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( )

## I Topological K-theory

< □ > < □ > < □ > < □ > < □ >

Topological K-theory of compact spaces

Let X be a compact Hausdorff space.

#### Definition

The **topological** *K*-**theory** of *X* is the abelian group  $K^0(X)$  generated by the isomorphism classes of complex vector bundles on *X*, with the relation

 $[E\oplus F]\sim [E]+[F].$ 

So

 $K^0(X) = \{[E] - [F]; E, F \rightarrow X \text{ complex vector bundles}\}.$ 

## The K-theory of a point

If X = \* is a point, then

$$\mathcal{K}^0(*) = \{ [\mathbb{C}^m] - [\mathbb{C}^n]; m, n \in \mathbb{Z}_{\geq 0} \} \cong \mathbb{Z}.$$

## The Serre-Swan theorem

#### Theorem (Serre-Swan)

If  $E \to X$  is a complex vector bundle over a compact Hausdorff space X, then there is a vector bundle  $E' \to X$  such that for some n,

 $E \oplus E' \cong X \times \mathbb{C}^n$ .

# The Serre-Swan theorem

#### Theorem (Serre-Swan)

If  $E \to X$  is a complex vector bundle over a compact Hausdorff space X, then there is a vector bundle  $E' \to X$  such that for some n,

 $E \oplus E' \cong X \times \mathbb{C}^n$ .

So  $\Gamma(E)$  is a finitely generated projective C(X)-module:

$$\Gamma(E)\oplus\Gamma(E')=C(X)^n.$$

Conversely, every finitely generated projective C(X)-module is of this form. And for two vector bundles  $E, F \rightarrow X$ ,

$$E \cong F \quad \Leftrightarrow \quad \Gamma(E) \cong \Gamma(F).$$

# The Serre-Swan theorem

#### Theorem (Serre-Swan)

If  $E \to X$  is a complex vector bundle over a compact Hausdorff space X, then there is a vector bundle  $E' \to X$  such that for some n,

 $E \oplus E' \cong X \times \mathbb{C}^n$ .

So  $\Gamma(E)$  is a finitely generated projective C(X)-module:

$$\Gamma(E)\oplus\Gamma(E')=C(X)^n.$$

Conversely, every finitely generated projective C(X)-module is of this form. And for two vector bundles  $E, F \rightarrow X$ ,

$$E \cong F \quad \Leftrightarrow \quad \Gamma(E) \cong \Gamma(F).$$

So

 $K^{0}(X) = \{[M] - [N]; M, N \text{ finitely generated projective } C(X)\text{-modules}\}.$ 

## Projections

Let  $E \to X$  be a complex vector bundle over a compact Hausdorff space X, and  $E' \to X$  such that  $E \oplus E' \cong X \times \mathbb{C}^n$ . Let

$$p: X \to \operatorname{End}(X \times \mathbb{C}^n) = M_n(C(X))$$

be the orthogonal projection onto E, for a metric on  $X \times \mathbb{C}^n$  such that  $E \perp E'$ .

A B A A B A

## Projections

Let  $E \to X$  be a complex vector bundle over a compact Hausdorff space X, and  $E' \to X$  such that  $E \oplus E' \cong X \times \mathbb{C}^n$ . Let

$$p: X \to \operatorname{End}(X \times \mathbb{C}^n) = M_n(C(X))$$

be the orthogonal projection onto E, for a metric on  $X \times \mathbb{C}^n$  such that  $E \perp E'$ . Then p is a **projection**:  $p = p^2 = p^*$ . And

• 
$$E = \operatorname{im}(p)$$

• 
$$\Gamma(E) = pC(X)^n = \{x \mapsto p(x)f(x); f \in C(X)^n\}.$$

## Projections

Let  $E \to X$  be a complex vector bundle over a compact Hausdorff space X, and  $E' \to X$  such that  $E \oplus E' \cong X \times \mathbb{C}^n$ . Let

$$p: X \to \operatorname{End}(X \times \mathbb{C}^n) = M_n(C(X))$$

be the orthogonal projection onto E, for a metric on  $X \times \mathbb{C}^n$  such that  $E \perp E'$ . Then p is a **projection**:  $p = p^2 = p^*$ . And

• 
$$\Gamma(E) = pC(X)^n = \{x \mapsto p(x)f(x); f \in C(X)^n\}.$$

Conversely, if  $p: X \to M_n(C(X))$  is a projection, then E = im(p) is a vector bundle over X. And  $im(p) \cong im(q)$  if and only if p and q are homotopic through projections, possibly in a larger matrix algebra. So

$${\mathcal K}^0(X)=\{[p]-[q]; p,q\in M_n({\mathcal C}(X)) ext{ for some } n ext{ are projections}\}.$$

< □ > < □ > < □ > < □ > < □ > < □ >

## Functoriality

Let X and Y be compact Hausdorff spaces, and  $f: X \to Y$  continuous. Then f induces

$$f^* \colon K^0(Y) \to K^0(X)$$

by

- $f^*([E] [F]) = [f^*E] [f^*F]$  for vector bundles  $E, F \to Y$
- $f^*([M] [N]) = [M \otimes_{C(Y)} C(X)] [N \otimes_{C(Y)} C(X)]$  for f.g.p. (right) C(Y)-modules M, N
- $f^*([p] [q]) = [f^*p] [f^*q]$  for projections  $p, q \in M_n(C(Y))$ , where

$$(f^*p)_{j,k}(x) = p_{j,k}(f(x)).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

## Locally compact spaces

Now let X be a locally compact Hausdorff space. Then its one-point compactification  $X^+$  is a compact Hausdorff space.

#### Definition

The **topological** *K***-theory** of *X* is the kernel  $K^0(X)$  of the map

$$i^* \colon K^0(X^+) \to K^0(\infty) = \mathbb{Z}$$

induced by the inclusion  $i: \infty \hookrightarrow X^+$  of the point at infinity.

# Higher K-theory

#### Definition

Let X be a locally compact Hausdorff space. Then for  $n \in \mathbb{Z}_{>0}$ ,

 $K^n(X) = K^0(X \times \mathbb{R}^n).$ 

・ 何 ト ・ ヨ ト ・ ヨ ト

# Higher K-theory

#### Definition

Let X be a locally compact Hausdorff space. Then for  $n \in \mathbb{Z}_{>0}$ ,

$$\mathcal{K}^n(X) = \mathcal{K}^0(X \times \mathbb{R}^n).$$

#### Theorem (Bott periodicity)

For all such X and n,

 $K^{n+2}(X)\cong K^0(X).$ 

Peter Hochs (RU)

▲ □ ▶ ▲ 三 ▶ ▲ 三

# K-theory of $C^*$ -algebras

< □ > < □ > < □ > < □ > < □ >

### K-theory of unital $C^*$ -algebras Let A be a $C^*$ -algebra with a unit. Let

$$M_{\infty}(A) = \varinjlim_n M_n(A),$$

where  $M_n(A) \hookrightarrow M_{n+1}(A)$  by padding with zeroes.

▲ □ ▶ ▲ 三 ▶ ▲ 三

# K-theory of unital $C^*$ -algebras

Let A be a  $C^*$ -algebra with a unit. Let

$$M_{\infty}(A) = \varinjlim_n M_n(A),$$

where  $M_n(A) \hookrightarrow M_{n+1}(A)$  by padding with zeroes.

#### Definition

The **even** *K*-**theory** of *A* is the abelian group  $K_0(A)$  generated by homotopy classes of projections in  $M_{\infty}(A)$ , subject to the relation

 $[p \oplus q] \sim [p] \oplus [q].$ 

#### Example

If X is a compact Hausdorff space,

$$K_0(C(X)) = K^0(X).$$

In particular,  $K_0(\mathbb{C}) = \mathbb{Z}$ .

### Functoriality

Let A, B be a  $C^*$ -algebras with a units. Let  $\varphi \colon A \to B$  be a \*-homomorphism. Then

$$\varphi_* \colon K_0(A) \to K_0(B)$$

is defined by

$$\varphi([p]-[q])=[\varphi_*p]-[\varphi_*q],$$

where

$$(\varphi_* p)_{j,k} = \varphi(p_{j,k}).$$

< □ > < 同 > < 回 > < 回 > < 回 >

## Functoriality

Let A, B be a  $C^*$ -algebras with a units. Let  $\varphi \colon A \to B$  be a \*-homomorphism. Then

$$\varphi_* \colon K_0(A) \to K_0(B)$$

is defined by

$$\varphi([p]-[q])=[\varphi_*p]-[\varphi_*q],$$

where

$$(\varphi_* p)_{j,k} = \varphi(p_{j,k}).$$

#### Example

Let X and Y be compact Hausdorff spaces, and  $f: X \to Y$  continuous. Then  $f^*: C(Y) \to C(X)$  is a \*-homomorphism, and  $(f^*)_*$  is the map  $f^*: K^0(Y) \to K^0(X)$  from earlier.

Note: contravariant vs. covariant functoriality.

Peter Hochs (RU)

K-theory of  $C^*$ -algebras

### Non-unital $C^*$ -algebras

Let A be a  $C^*$ -algebra, not necessarily with a unit. The **unitisation** of A is the  $C^*$ -algebra

$$A^+ = A \oplus \mathbb{C},$$

with multiplication

$$(a+z)(b+w) = ab + wa + zb + zw,$$

involution

$$(a+z)^* = a^* + \bar{z}$$

and norm

$$||a+z|| = ||a+z||_{\mathcal{B}(A)}.$$

### Non-unital $C^*$ -algebras

Let A be a  $C^*$ -algebra, not necessarily with a unit. The **unitisation** of A is the  $C^*$ -algebra

$$A^+ = A \oplus \mathbb{C},$$

with multiplication

$$(a+z)(b+w) = ab + wa + zb + zw,$$

involution

$$(a+z)^* = a^* + \bar{z}$$

and norm

$$||a+z|| = ||a+z||_{\mathcal{B}(A)}.$$

#### Example

If X is a locally compact Hausdorff space, then  $C_0(X)^+ = C(X^+)$ .

Peter Hochs (RU)

K-theory of C\*-algebras

18 June 11 / 41

A D N A B N A B N A B N

## K-theory of non-unital $C^*$ -algebras

Let A be a C\*-algebra. Let  $\pi: A^+ \to \mathbb{C}$  be projection onto the factor  $\mathbb{C}$ .

#### Definition

The even K-theory of A is the kernel of the map

$$\pi_* \colon K_0(A^+) \to K_0(\mathbb{C}) = \mathbb{Z}.$$

# Higher K-groups

#### Definition

For a  $C^*$ -algebra A and  $n \in \mathbb{Z}_{\geq 0}$ ,

$$K_n(A) = K_0(A \otimes C_0(\mathbb{R}^n)).$$

< □ > < □ > < □ > < □ > < □ >

# Higher K-groups

#### Definition

For a  $C^*$ -algebra A and  $n \in \mathbb{Z}_{\geq 0}$ ,

$$K_n(A) = K_0(A \otimes C_0(\mathbb{R}^n)).$$

### Theorem (Bott periodicity)

For all such A and n,

$$K_{n+2}(A)=K_n(A).$$

We sometimes write  $K_*(A) := K_0(A) \oplus K_1(A)$ .

< □ > < □ > < □ > < □ > < □ > < □ >

## Stability and continuity

Theorem (Stability) If two  $C^*$ -algebras A and B are Morita equivalent, then for all n,

 $K_n(A) = K_n(B).$ 

In particular,  $K_n(A \otimes \mathcal{K}) = K_n(A)$ .

- 4 回 ト 4 ヨ ト 4 ヨ ト

### Stability and continuity

Theorem (Stability)

If two  $C^*$ -algebras A and B are Morita equivalent, then for all n,

 $K_n(A) = K_n(B).$ 

In particular,  $K_n(A \otimes \mathcal{K}) = K_n(A)$ .

#### Theorem (Continuity)

If  $(A_j)_{j=1}^\infty$  is a sequence of C\*-algebras connected by \*-homomorphisms  $A_n \to A_{n+1}$ , then

$$\varinjlim_j K_n(A_j) = K_n(\varinjlim_j A_j).$$

(人間) トイヨト イヨト ニヨ

### Direct sums

For a sequence of  $C^*$ -algebras  $(A_j)_{i=1}^{\infty}$ , let

$$\|(a_1, a_2, \ldots, a_n, 0, \ldots)\| = \sup_j \|a_j\|_{A_j}.$$

 $\infty$ 

i=1

#### Lemma

We have

$$K_n\left(\bigoplus_{j=1}^{\infty}A_j\right)=\bigoplus_{j=1}^{\infty}K_n\left(A_j\right).$$

#### Proof.

This is elementary for finite direct sums. By continuity, this extends to infinite direct sums.

Peter Hochs (RU)

### Homotopy invariance

Let A and B be two  $C^*$ -algebras.

#### Definition

Two \*-homomorphisms  $f, g: A \to B$  are **homotopic** if there is a path of \*-homomorphisms  $(f_t)_{t \in [0,1]}: A \to B$  such that  $f_0 = f$ ,  $f_1 = g$  and for all  $a \in A$ ,

$$t\mapsto f_t(a)$$

is a continuous path in B.

#### Proposition

If  $f, g: A \rightarrow B$  are homotopic, then they induce the same map

$$f_* = g_* \colon K_*(A) \to K_*(B).$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

### The six-term exact sequence

#### Theorem

Let A be a C<sup>\*</sup>-algebra, and  $J \subset A$  a closed, \*-closed, two-sided ideal. Then there is an exact sequence

$$\begin{array}{c} K_0(J) \longrightarrow K_0(A) \longrightarrow K_0(A/J) \\ & \delta \\ & & & \downarrow^{\delta} \\ K_1(A/J) \longleftarrow K_1(A) \longleftarrow K_1(J) \end{array}$$

Here we use Bott periodicity:  $K_2(J) = K_0(J)$ .

### Examples

• For any locally compact Hausdorff space X,

$$\mathcal{K}_n(C_0(X)) = \mathcal{K}^n(X).$$

$$\mathcal{K}_n(C_0(\mathbb{R}^n)) = \mathbb{Z} \qquad \mathcal{K}_{n+1}(C_0(\mathbb{R}^n)) = 0$$

$$\mathcal{K}_0(C_0([0,\infty))) = \mathcal{K}_1(C_0([0,\infty))) = 0$$

$$\mathcal{K}_0(C_0(\mathbb{R}) \rtimes (\mathbb{Z}/2)) = \mathbb{Z} \qquad \mathcal{K}_1(C_0(\mathbb{R}) \rtimes (\mathbb{Z}/2)) = 0$$

< □ > < 同 >

### More examples

• For any Hilbert space H,

1

$$K_0(\mathcal{K}(H)) = K_0(\mathbb{C}) = \mathbb{Z}$$
  $K_1(\mathcal{K}(H)) = K_1(\mathbb{C}) = 0.$ 

• For any infinite-dimensional, separable Hilbert space H,

$$K_0(\mathcal{B}(H)) = K_1(\mathcal{B}(H)) = 0.$$

• If K is a compact Lie group, then by Peter–Weyl,

$$\mathcal{K}_0(C^*(\mathcal{K})) = \mathcal{K}_0\left(\bigoplus_{V \in \hat{\mathcal{K}}} \operatorname{End}(V)\right)$$
$$= \bigoplus_{V \in \hat{\mathcal{K}}} \mathcal{K}_0\left(\operatorname{End}(V)\right) = \bigoplus_{V \in \hat{\mathcal{K}}} \mathbb{Z} = R(\mathcal{K}).$$

### $K_1$ via invertible matrices

If A is a unital C\*-algebra, let  $GL_n(A)$  be the group of invertible  $n \times n$  matrices over A. We embed  $GL_n(A) \hookrightarrow GL_{n+1}(A)$  by adding a 1 on the bottom-right corner, and zeros everywhere else. Set

$$\operatorname{GL}_{\infty}(A) = \varinjlim_{n} \operatorname{GL}_{n}(A).$$

Let  $GL_{\infty}(A)_0 < GL_{\infty}(A)$  be the connected component of the identity.

### $K_1$ via invertible matrices

If A is a unital C\*-algebra, let  $GL_n(A)$  be the group of invertible  $n \times n$  matrices over A. We embed  $GL_n(A) \hookrightarrow GL_{n+1}(A)$  by adding a 1 on the bottom-right corner, and zeros everywhere else. Set

$$\operatorname{GL}_{\infty}(A) = \varinjlim_{n} \operatorname{GL}_{n}(A).$$

Let  $GL_{\infty}(A)_0 < GL_{\infty}(A)$  be the connected component of the identity.

#### Proposition

For every, possibly non-unital,  $C^*$ -algebra A, there is an isomorphism of abelian groups

$$\operatorname{GL}_{\infty}(A^+)/\operatorname{GL}_{\infty}(A^+)_0\cong K_1(A).$$

(4) (日本)

## III K-theory of $C^*$ -algebras of reductive Lie groups

< 47 ▶

→ ∃ →

For a real reductive Lie group G, the group  $C^*$ -algebra  $C^*_r(G)$  can be described explicitly via representation theory. (See Tyrone's lectures.) This can be used to describe  $K_0(C^*_r(G))$ , but it gives more information.

## The reduced $C^*$ -algebra of a real reductive group

Let G be a connected, linear, real reductive Lie group.

Theorem (A. Wassermann, Clare–Crisp–Higson, Clare–Higson–Song–Tang)

The reduced group  $C^*$ -algebra of G is Morita equivalent to

$$\sum_{[P,\sigma]} C_0(\mathfrak{a}/W'_{\sigma}) \rtimes R_{\sigma}.$$

- P = MAN runs over the cuspidal parabolics
- $\sigma$  is a discrete series representation of M
- $[P, \sigma] = [P', \sigma']$  if there is a  $k \in K$  such that  $M'A' = kMAk^{-1}$  and  $Ad_k^* \sigma' \cong \sigma$
- $W_{\sigma} = \{ w \in N_{K}(MA); Ad_{w}^{*} \sigma \cong \sigma \} / (K \cap M)$
- $I(w, \sigma)$ :  $\operatorname{Ind}_{P}^{G}(\sigma \otimes 1) \to \operatorname{Ind}_{P}^{G}(\operatorname{Ad}_{w}^{*} \sigma \otimes 1)$  is the Knapp–Stein intertwiner
- $W'_{\sigma} = \{ w \in W_{\sigma}; I(w, \sigma) \in \mathbb{C}I \}$
- $W_{\sigma} = W'_{\sigma} \rtimes R_{\sigma}$  for the *R*-group  $R_{\sigma} \cong (\mathbb{Z}/2)^n_{\dot{\Box}}$

# The K-theory $C_r^*(G)$ : trivial contributions

#### Theorem

The reduced group  $C^*$ -algebra of G is Morita equivalent to

$$\sum_{[P,\sigma]} C_0(\mathfrak{a}/W'_{\sigma}) \rtimes R_{\sigma}.$$

▲ □ ▶ ▲ 三 ▶ ▲ 三

# The K-theory $C_r^*(G)$ : trivial contributions

#### Theorem

The reduced group  $C^*$ -algebra of G is Morita equivalent to

$$\sum_{[P,\sigma]} C_0(\mathfrak{a}/W'_{\sigma}) \rtimes R_{\sigma}.$$

Lemma

If  $W'_{\sigma} \neq \{e\}$ , then

$$K_*(C_0(\mathfrak{a}/W'_{\sigma}) \rtimes R_{\sigma}) = 0.$$

< □ > < □ > < □ > < □ > < □ > < □ >

# The K-theory $C_r^*(G)$ : trivial contributions

#### Theorem

The reduced group  $C^*$ -algebra of G is Morita equivalent to

$$\sum_{[P,\sigma]} C_0(\mathfrak{a}/W'_{\sigma}) \rtimes R_{\sigma}.$$

Lemma

If  $W'_{\sigma} \neq \{e\}$ , then

$$K_*(C_0(\mathfrak{a}/W'_{\sigma}) \rtimes R_{\sigma}) = 0.$$

#### Example

If dim( $\mathfrak{a}$ ) = 1 and  $W_{\sigma} = W'_{\sigma}$  acts by reflections,

$$\mathcal{K}_*(\mathcal{C}_0(\mathfrak{a}/W'_\sigma)\rtimes R_\sigma)=\mathcal{K}_*(\mathcal{C}_0([0,\infty)))=0.$$

< □ > < 同 > < 回 > < 回 > < 回 >

# The K-theory $C_r^*(G)$ : nontrivial contributions

#### Theorem (Knapp-Stein)

If  $W'_{\sigma} = \{e\}$ , then  $R_{\sigma} = (\mathbb{Z}/2)^{\dim(A_{\max}) - \dim(A)}$ , and a is  $R_{\sigma}$ -equivariantly isomorphic to  $\mathbb{R}^{\dim(A)}$ , on which  $R_{\sigma}$  acts by reflections in the first  $\dim(A_{\max}) - \dim(A)$  coordinates.

# The K-theory $C_r^*(G)$ : nontrivial contributions

#### Theorem (Knapp-Stein)

If  $W'_{\sigma} = \{e\}$ , then  $R_{\sigma} = (\mathbb{Z}/2)^{\dim(A_{\max}) - \dim(A)}$ , and a is  $R_{\sigma}$ -equivariantly isomorphic to  $\mathbb{R}^{\dim(A)}$ , on which  $R_{\sigma}$  acts by reflections in the first  $\dim(A_{\max}) - \dim(A)$  coordinates.

#### Corollary

If  $W'_{\sigma} = \{e\}$ , then

 $C_0(\mathfrak{a}/W'_{\sigma}) \rtimes R_{\sigma} \cong C_0(\mathbb{R}^{\dim(A_{\max})}) \otimes (C_0(\mathbb{R}) \rtimes (\mathbb{Z}/2))^{\otimes (\dim(A_{\max}) - \dim(A))},$ 

and

$$egin{aligned} &\mathcal{K}_{\dim(\mathcal{A}_{\max})}ig(\mathcal{C}_0(\mathfrak{a}/W'_\sigma) 
times \mathcal{R}_\sigmaig) = \mathbb{Z} \ &\mathcal{K}_{\dim(\mathcal{A}_{\max})+1}ig(\mathcal{C}_0(\mathfrak{a}/W'_\sigma) 
times \mathcal{R}_\sigmaig) = 0. \end{aligned}$$

Note:  $\dim(A_{\max}) = \dim(G/K) \mod 2$ .

イロト イヨト イヨト

The *K*-theory of  $C_r^*(G)$ 

Conclusion:

$$\begin{aligned} \mathcal{K}_{\dim(G/\mathcal{K})}(C_r^*(G)) &= \bigoplus_{[P,\sigma]} \mathcal{K}_{\dim(G/\mathcal{K})}(C_0(\mathfrak{a}/W'_{\sigma}) \rtimes R_{\sigma}) \\ &= \bigoplus_{[P,\sigma], W'_{\sigma} = \{e\}} \mathbb{Z} \end{aligned}$$

and

 $K_{\dim(G/K)+1}(C_r^*(G))=0.$ 

Peter Hochs (RU)

K-theory of  $C^*$ -algebras

≣ ► ≡ ∽ < ⊂ 18 June 25 / 41

< □ > < 同 > < 回 > < 回 > < 回 >

#### The discrete series

Suppose that G has a compact Cartan subgroup. Then it is a cuspidal parabolic of itself, and  $C_r^*(G)$  has the direct summand

 $\bigoplus_{\sigma\in \hat{G}_{ds}}\mathcal{K}(H_{\sigma}).$ 

So  $K_0(C_r^*(G))$  has the direct summand

$$igoplus_{\sigma\in \widehat{G}_{\mathsf{ds}}} \mathcal{K}_0(\mathcal{K}(\mathcal{H}_\sigma)) = igoplus_{\sigma\in \widehat{G}_{\mathsf{ds}}} \mathbb{Z}.$$

#### The discrete series

Suppose that G has a compact Cartan subgroup. Then it is a cuspidal parabolic of itself, and  $C_r^*(G)$  has the direct summand

 $\bigoplus_{\sigma\in\hat{G}_{ds}}\mathcal{K}(H_{\sigma}).$ 

So  $K_0(C_r^*(G))$  has the direct summand

$$igoplus_{\sigma\in \hat{G}_{\mathsf{ds}}} \mathcal{K}_0(\mathcal{K}(\mathcal{H}_\sigma)) = igoplus_{\sigma\in \hat{G}_{\mathsf{ds}}} \mathbb{Z}.$$

The generator corresponding to  $\sigma \in \hat{G}_{ds}$  can be described as follows. Fix  $v \in H_{\sigma}$  of norm 1. Consider the matrix coefficient

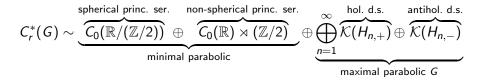
$$m_{v,v}(g) = (\sigma(g)v, v).$$

Then  $p_{\sigma} := d_{\sigma} m_{v,v}$  is an idempotent in  $C_r^*(G)$ , and its class generates  $\mathcal{K}_0(\mathcal{K}(\mathcal{H}_{\sigma}))$ .

Peter Hochs (RU)

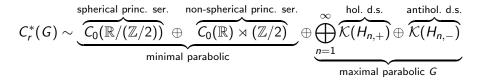
Example:  $G = SL(2, \mathbb{R})$ 

If  $G = SL(2, \mathbb{R})$ , then we have a Morita equivalence



Example:  $G = SL(2, \mathbb{R})$ 

If  $G = SL(2, \mathbb{R})$ , then we have a Morita equivalence



So

$$\mathcal{K}_0(\mathcal{C}_r^*(\mathcal{G})) = \mathcal{K}_0(\mathcal{C}_0(\mathbb{R}) \rtimes (\mathbb{Z}/2)) \oplus \bigoplus_{n=1}^{\infty} \mathcal{K}_0(\mathcal{K}(\mathcal{H}_{n,+})) \oplus \mathcal{K}_0(\mathcal{K}(\mathcal{H}_{n,-})),$$

where every K-group on the right hand side is  $\mathbb{Z}$ .

#### Example: complex groups

Let G be a complex semisimple Lie group. Then there is one parabolic P = MAN up to conjugacy, M is a torus, and all principal series representations are irreducible. So  $W'_{\sigma} = W_{\sigma}$  for all  $\sigma \in \hat{M}$ , and there is a Morita equivalence

$$C^*_r(G) \sim \bigoplus_{[P,\sigma]} C_0(\mathfrak{a}/W_\sigma) = C_0(\hat{G}_{\mathsf{temp}}).$$

### Example: complex groups

Let G be a complex semisimple Lie group. Then there is one parabolic P = MAN up to conjugacy, M is a torus, and all principal series representations are irreducible. So  $W'_{\sigma} = W_{\sigma}$  for all  $\sigma \in \hat{M}$ , and there is a Morita equivalence

$$C^*_r(G) \sim igoplus_{[P,\sigma]} C_0(\mathfrak{a}/W_\sigma) = C_0(\hat{G}_{\mathsf{temp}}).$$

So

$$\mathcal{K}_n(\mathcal{C}^*_r(\mathcal{G})) = \mathcal{K}^n(\hat{\mathcal{G}}_{ ext{temp}}) = igoplus_{W_\sigma = \{e\}} \mathcal{K}^n(\mathfrak{a}),$$

and

$$\mathcal{K}^{\dim(G/\mathcal{K})}(\mathfrak{a}) = \mathbb{Z} \qquad \mathcal{K}^{\dim(G/\mathcal{K})+1}(\mathfrak{a}) = 0.$$

This case was worked out by Penington and Plymen in 1983.

< □ > < □ > < □ > < □ > < □ > < □ >

## IV The higher index

< □ > < □ > < □ > < □ > < □ >

#### The Fredholm index

Consider the ideal  $\mathcal{K}(H) \subset \mathcal{B}(H)$ . We have the boundary map in the six-term exact sequence

 $\delta \colon K_1(\mathcal{B}(H)/\mathcal{K}(H)) \to K_0(\mathcal{K}(H)) = \mathbb{Z}.$ 

< □ > < 同 > < 回 > < 回 > < 回 >

#### The Fredholm index

Consider the ideal  $\mathcal{K}(H) \subset \mathcal{B}(H)$ . We have the boundary map in the six-term exact sequence

$$\delta \colon \mathcal{K}_1(\mathcal{B}(H)/\mathcal{K}(H)) \to \mathcal{K}_0(\mathcal{K}(H)) = \mathbb{Z}.$$

Let  $F \in \mathcal{B}(H)$  be Fredholm. Then its class in  $\mathcal{B}(H)/\mathcal{K}(H)$  is invertible, and defines an element

$$[F] \in K_1(\mathcal{B}(H)/\mathcal{K}(H)).$$

Proposition

Now

$$\delta[F] = \operatorname{index}(F) = \dim(\ker(F)) - \dim(H/\operatorname{im}(F)).$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

#### The abstract index

Whenever we have an ideal  $J \subset A$  and an element  $a \in A$  invertible modulo J, we can **define** 

$$\operatorname{index}_J(a) := \delta[a] \in K_0(J),$$

where

$$\delta \colon K_1(A/J) \to K_0(J)$$

is the boundary map form the six-term exact sequence.

∃ ▶ ∢ ∃

#### The abstract index

Whenever we have an ideal  $J \subset A$  and an element  $a \in A$  invertible modulo J, we can **define** 

$$\operatorname{index}_J(a) := \delta[a] \in K_0(J),$$

where

$$\delta \colon K_1(A/J) \to K_0(J)$$

is the boundary map form the six-term exact sequence.

In particular, if  $\mathcal{E}$  is a Hilbert A-module, then an A-Fredholm operator  $F \in \mathcal{L}(\mathcal{E})$  has an index

$$\operatorname{index}_{\mathcal{K}(\mathcal{E})}(F) \in K_0(\mathcal{K}(\mathcal{E})).$$

If  $\mathcal{E}$  is **full**, i.e.

$$\mathsf{span}\{(v,w);v,w\in\mathcal{E}\}\subset A$$

is dense, then  ${\mathcal E}$  defines a Morita equivalence between  ${\mathcal K}({\mathcal E})$  and  $A_{\!\!}$  and we obtain

$$\operatorname{index}_{\mathcal{K}(\mathcal{E})}(F) \in K_0(A).$$

Peter Hochs (RU)

(4) (3) (4) (4) (4)

#### The equivariant index

Let G be a locally compact group acting properly and isometrically on a Riemannian manifold M, such that M/G is compact. Let D be a G-equivariant elliptic, self-adjoint, odd-graded, first order differential operator on a  $\mathbb{Z}/2$ -graded Hermitian G-vector bundle  $E \to M$ .

### The equivariant index

Let G be a locally compact group acting properly and isometrically on a Riemannian manifold M, such that M/G is compact. Let D be a G-equivariant elliptic, self-adjoint, odd-graded, first order differential operator on a  $\mathbb{Z}/2$ -graded Hermitian G-vector bundle  $E \to M$ .

We constructed a Hilbert  $C^*(G)$ -module  $\mathcal{E}$  by completing  $\Gamma_c(E)$  in the inner product

$$(s_1, s_2)(g) = (s_1, g \cdot s_2)_{L^2(E)}.$$

The operator D defines a  $C^*(G)$ -Fredholm operator  $F \in \mathcal{L}(\mathcal{E})$ , which is a modification of

$$\frac{D}{\sqrt{D^2+1}}$$

Here  $C^*(G)$  can be either the maximal or reduced group  $C^*$ -algebra.

#### Definition

The equivariant index of D is

$$\operatorname{ndex}_G(D) = \operatorname{index}_{\mathcal{K}(\mathcal{E})}(F) \in K_0(C^*(G)).$$

#### Relation with classical indices

If G = K is **compact**, then

 $\operatorname{index}_{\mathcal{K}}(D) = [\operatorname{ker}(D)] - [\operatorname{ker}(D^*)] \in \mathcal{K}_0(C^*(\mathcal{K})) = R(\mathcal{K}).$ 

(This is the Fredholm index if  $K = \{e\}$ .)

< □ > < 同 > < 回 > < 回 > < 回 >

### Relation with classical indices

If G = K is **compact**, then

 $\operatorname{index}_{\mathcal{K}}(D) = [\operatorname{ker}(D)] - [\operatorname{ker}(D^*)] \in \mathcal{K}_0(\mathcal{C}^*(\mathcal{K})) = \mathcal{R}(\mathcal{K}).$ 

(This is the Fredholm index if  $K = \{e\}$ .)

Suppose that *M* is the universal cover of a compact manifold *X*, and that  $G = \Gamma = \pi_1(X)$ . Let  $D_X$  be the operator on  $E/\Gamma \to X$  induced by *D*. Consider the homomorphism

$$\sum_{\Gamma} : C^*_{\max}(\Gamma) \to \mathbb{C}$$

given by summing functions over  $\Gamma$ .

< □ > < □ > < □ > < □ > < □ > < □ >

## Relation with classical indices

If G = K is **compact**, then

 $\operatorname{index}_{\mathcal{K}}(D) = [\operatorname{ker}(D)] - [\operatorname{ker}(D^*)] \in \mathcal{K}_0(C^*(\mathcal{K})) = R(\mathcal{K}).$ 

(This is the Fredholm index if  $K = \{e\}$ .)

Suppose that *M* is the universal cover of a compact manifold *X*, and that  $G = \Gamma = \pi_1(X)$ . Let  $D_X$  be the operator on  $E/\Gamma \to X$  induced by *D*. Consider the homomorphism

$$\sum_{\Gamma} : C^*_{\max}(\Gamma) \to \mathbb{C}$$

given by summing functions over  $\Gamma$ . Then

$$(\sum_{\Gamma})_* \operatorname{index}_{\Gamma}(D) = \operatorname{index}(D_X) \in \mathbb{Z}.$$

So  $\operatorname{index}_{\Gamma}(D)$  is a **refinement** of  $\operatorname{index}(D_X)$ . (The same can be achieved via the trace  $\tau(f) = f(e)$  on  $C^*(\Gamma)$  via Atiyah's  $L^2$ -index theorem.)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### Dirac operators on G/K

Let G be a connected Lie group. Let K < G be maximal compact, and  $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$  an orthogonal decomposition for a K-invariant inner product. Suppose (for simplicity) that the map

Ad: 
$$K \to SO(p)$$

lifts to

$$\widetilde{\mathsf{Ad}}$$
:  $K \to \mathsf{Spin}(\mathfrak{p})$ .

Then we view the standard representation  $S_p$  of Spin(p) as a representation of K.

## Dirac operators on G/K

Let G be a connected Lie group. Let K < G be maximal compact, and  $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$  an orthogonal decomposition for a K-invariant inner product. Suppose (for simplicity) that the map

Ad: 
$$K \to SO(p)$$

lifts to

$$\widetilde{\mathsf{Ad}}$$
:  $K \to \mathsf{Spin}(\mathfrak{p})$ .

Then we view the standard representation  $S_p$  of Spin(p) as a representation of K.

Let  $\{X_1, \ldots, X_n\}$  be an orthonormal basis of  $\mathfrak{p}$ . For  $V \in \hat{K}$ , consider the Dirac operator

$$D_{G/K}^V = \sum_{j=1}^n L_{X_j} \otimes c(X_j) \otimes 1_V$$

on

$$(C^{\infty}(G)\otimes S_{\mathfrak{p}}\otimes V)^{K}$$

### The discrete series

#### Theorem (Parthasarathy 1972, Atiyah–Schmid 1977)

Let G be a connected, real semisimple Lie group with rank(G) = rank(K). Let  $V \in \hat{K}$ , and let  $\lambda$  be its highest weight. Then

- if  $\lambda + \rho_K$  is regular, then ker<sub>L<sup>2</sup></sub> $(D_{G/K}^V)$  is the discrete series representation of G with Harish–Chandra parameter  $\lambda + \rho_K$
- if  $\lambda + \rho_K$  is singular, then  $\ker_{L^2}(D_{G/K}^V) = 0$ .

#### Theorem (Connes-Moscovici 1982)

Let G be a connected, real semisimple Lie group with rank(G) > rank(K). Then for all  $V \in \hat{K}$ ,  $ker_{L^2}(D_{G/K}^V) = 0$ .

# The Connes–Kasparov conjecture

Using the equivariant index, we obtain information from  $D_{G/K}^V$  for **any** G and V.

Definition

Dirac induction is the map

$$\operatorname{\mathsf{D-Ind}}^{\mathsf{G}}_{\mathsf{K}}\colon \mathsf{R}(\mathsf{K}) o \mathsf{K}_*(\mathsf{C}^*_r(\mathsf{G}))$$

given by  $\text{D-Ind}_{K}^{G}[V] = \text{index}_{G}(D_{G/K}^{V}).$ 

# The Connes–Kasparov conjecture

Using the equivariant index, we obtain information from  $D_{G/K}^V$  for **any** G and V.

Definition

Dirac induction is the map

$$\mathsf{D} ext{-Ind}^{\mathsf{G}}_{\mathsf{K}}\colon \mathsf{R}(\mathsf{K}) o \mathsf{K}_*(\mathsf{C}^*_r(\mathsf{G}))$$

given by  $\text{D-Ind}_{K}^{G}[V] = \text{index}_{G}(D_{G/K}^{V}).$ 

Conjecture (Connes-Kasparov)

For almost connected Lie groups G, Dirac induction is an isomorphism of abelian groups.

A B A A B A

## Proofs of the Connes-Kasparov conjecture

#### Conjecture (Connes-Kasparov)

For almost connected Lie groups G, Dirac induction  $V \mapsto \operatorname{index}_G(D_{G/K}^V)$  is an isomorphism of abelian groups  $R(K) \cong K_*(C_r^*(G))$ .

Proofs:

- for semisimple/reductive groups:
  - ▶ by computing C<sup>\*</sup><sub>r</sub>(G): A. Wassermann 1987 + recent work by Clare, Crisp, Higson, Song, Tang and Vogan
  - directly: V. Lafforgue 2002, Afgoustidis 2019
- in general: Chabert-Echterhoff-Nest 2003.

#### Example: the discrete series

Suppose that G has discrete series representations, and let  $\pi$  be a discrete series representation. We saw that  $\pi$  contributes a generator

$$[p_{\sigma}] := [d_{\sigma}m_{v,v}] \in K_0(\mathcal{K}(H_{\sigma})) \subset K_0(C_r^*(G)).$$

This generator equals

$$[p_{\sigma}] = \mathsf{D}\text{-}\mathsf{Ind}_{\mathcal{K}}^{\mathcal{G}}[V] = \mathsf{index}_{\mathcal{G}}(D_{\mathcal{G}/\mathcal{K}}^{V}),$$

with  $D_{G/K}^V$  as in Parthasarathy's/Atiyah–Schmid's construction.

# Classifying space for proper actions

Let G be a locally compact, Hausdorff, second countable group.

#### Definition

A classifying space for proper actions by G is a topological space  $\underline{E}G$  with a proper action by G, such that for any proper G-space X,

- there is a *G*-equivariant continuous map  $X \rightarrow \underline{E}G$
- any two such maps are G-equivariantly homotopic.

This exists and is unique up to G-equivariant homotopy equivalence.

#### Example

If G is a connected Lie group, we can take  $\underline{E}G = G/K$  by Abels' theorem.

・ 何 ト ・ ヨ ト ・ ヨ ト

## The Baum–Connes conjecture

#### Conjecture (Baum-Connes 1982)

The equivariant index defines an isomorphism of abelian groups

$$RK^G_*(\underline{E}G) \to K_*(C^*_r(G)),$$

where  $RK_*^G$  denotes representable equivariant K-homology.

Intuitively,  $RK_*^G(\underline{E}G)$  consists of homotopy classes of abstract *G*-equivariant elliptic operators on proper *G*-spaces *X* such that X/G is compact.

The idea is that this is more computable than  $K_*(C_r^*(G))$ .

# The Baum–Connes conjecture

#### Conjecture (Baum-Connes 1982)

The equivariant index defines an isomorphism of abelian groups

$$RK^G_*(\underline{E}G) \to K_*(C^*_r(G)),$$

where  $RK_*^G$  denotes representable equivariant K-homology.

Intuitively,  $RK_*^G(\underline{E}G)$  consists of homotopy classes of abstract *G*-equivariant elliptic operators on proper *G*-spaces *X* such that X/G is compact.

The idea is that this is more computable than  $K_*(C_r^*(G))$ .

The conjecture has been proved for many classes of groups.

An important open case is non-cocompact lattices in Lie groups with real rank  $\geq$  2, e.g. SL(3,  $\mathbb{Z}$ ).

・ロト ・四ト ・ヨト ・ヨト

#### Special cases

• If G is a connected, real Lie group, then

$$RK_G^*(\underline{E}G) = K_G^*(G/K) = R(K)$$

via  $[D^V_{G/K}] \leftrightarrow [V]$ , and the Baum–Connes conjecture becomes the Connes–Kasparov conjecture.

• The Novikov conjecture in manifold topology (rational injectivity), where  $G = \pi_1(X)$  as earlier.

Topics not covered—a non-exhaustive list

- KK-theory: KK(A, B), encodes relations/maps between  $K_*(A)$  and  $K_*(B)$
- extracting information from *K*-theory via pairing with cyclic cohomology or traces, e.g. orbital integrals

# Thank you

< □ > < □ > < □ > < □ > < □ >