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Overview

Idea: study singular (e.g. non-Hausdorff) topological spaces through
noncommutative C*-algebras “associated to them”.

To do this, generalise tools from algebraic topology to C*-algebras.

This works well for K-theory.
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Topological K-theory of compact spaces

Let X be a compact Hausdorff space.

Definition
The topological K-theory of X is the abelian group K°(X) generated by
the isomorphism classes of complex vector bundles on X, with the relation

[E ® F] ~ [E] + [F].

So
K°(X) = {[E] — [F]; E, F — X complex vector bundles}.
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The K-theory of a point

If X = % is a point, then

K°(¥) = {[C™] — [C"]; m,n € Z>o} = Z.
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The Serre-Swan theorem

Theorem (Serre-Swan)

If E — X is a complex vector bundle over a compact Hausdorff space X,
then there is a vector bundle E' — X such that for some n,

EQE =X xC".
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The Serre-Swan theorem

Theorem (Serre-Swan)

If E — X is a complex vector bundle over a compact Hausdorff space X,
then there is a vector bundle E' — X such that for some n,

EQE =X xC".

So '(E) is a finitely generated projective C(X)-module:
ME)eT(E)=C(X)".

Conversely, every finitely generated projective C(X)-module is of this
form. And for two vector bundles E, F — X,

E~F & T(E)XT(F).
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The Serre-Swan theorem

Theorem (Serre-Swan)

If E — X is a complex vector bundle over a compact Hausdorff space X,
then there is a vector bundle E' — X such that for some n,

EQE =X xC".

So '(E) is a finitely generated projective C(X)-module:
M(E)® T (E") = C(X)".
Conversely, every finitely generated projective C(X)-module is of this

form. And for two vector bundles E, F — X,

E~F & T(E)~T(F).
So

K°(X) = {[M] — [N]; M, N finitely generated projective C(X)-modules}.
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Projections

Let E — X be a complex vector bundle over a compact Hausdorff space
X, and E' — X such that E® E' =2 X x C". Let

p: X — End(X x C") = M,(C(X))

be the orthogonal projection onto E, for a metric on X x C” such that
E1lE.
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Projections

Let E — X be a complex vector bundle over a compact Hausdorff space
X, and E' — X such that E® E' =2 X x C". Let

p: X — End(X x C") = M,(C(X))

be the orthogonal projection onto E, for a metric on X x C” such that
E L E'. Then pis a projection: p = p?> = p*. And
e E=im(p)

o [(E) = pC(X)" = {x— p(x)f(x);f € C(X)"}.
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Projections

Let E — X be a complex vector bundle over a compact Hausdorff space
X, and E' — X such that E® E' =2 X x C". Let

p: X — End(X x C") = M,(C(X))
be the orthogonal projection onto E, for a metric on X x C” such that
E L E'. Then pis a projection: p = p?> = p*. And
e E=im(p)
o I(E)=pC(X)"={xw p(x)f(x);f € C(X)"}.
Conversely, if p: X — Mp(C(X)) is a projection, then E = im(p) is a

vector bundle over X. And im(p) = im(q) if and only if p and g are
homotopic through projections, possibly in a larger matrix algebra. So

K°(X) = {[p] — [a]; p, g € M,(C(X)) for some n are projections}.
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Functoriality

Let X and Y be compact Hausdorff spaces, and f: X — Y continuous.
Then f induces

F*: KOY) = K°(X)
by
o *([E] — [F]) = [f*E] — [f*F] for vector bundles E, F — Y

o *([M] —[N]) = [M&c(yy C(X)] = [N @c(yy C(X)] for f.g.p. (right)
C(Y)-modules M, N

o *([p] — [q]) = [f*p] — [f*q] for projections p,q € M,(C(Y)), where

(F*p)j.k(x) = pjk(f(x))-
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Locally compact spaces

Now let X be a locally compact Hausdorff space. Then its one-point
compactification X is a compact Hausdorff space.

Definition
The topological K-theory of X is the kernel K°(X) of the map

i*: KOXT) = K%(0) =2

induced by the inclusion i: co < X™T of the point at infinity.
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Higher K-theory

Definition

Let X be a locally compact Hausdorff space. Then for n € Z>o,
K"(X) = K9%(X x R").

Peter Hochs (RU)
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Higher K-theory

Definition
Let X be a locally compact Hausdorff space. Then for n € Z>o,

K"(X) = K9%(X x R").

Theorem (Bott periodicity)
For all such X and n,
K™2(X) = K°(X).
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K-theory of unital C*-algebras
Let A be a C*-algebra with a unit. Let

Moo(A) = limy My (A).

n

where M,(A) < M,+1(A) by padding with zeroes.
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K-theory of unital C*-algebras
Let A be a C*-algebra with a unit. Let

Meo(A) = lim M, (A),

n

where M,(A) < M,+1(A) by padding with zeroes.

Definition

The even K-theory of A is the abelian group Ky(A) generated by
homotopy classes of projections in My (A), subject to the relation

[p® ql] ~ [p] ® [q]-

Example

If X is a compact Hausdorff space,
Ko(C(X)) = K°(X).

In particular, Ko(C) = Z.
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Functoriality
Let A, B be a C*-algebras with a units. Let ¢: A — B be a
*-homomorphism. Then

©Ox - Ko(A) — K()(B)

is defined by
o([p] = [a]) = [p«p] — [xal;
where

(+P)jk = (Pjk)-
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Functoriality

Let A, B be a C*-algebras with a units. Let ¢: A — B be a
*-homomorphism. Then

©Ox - Ko(A) — KO(B)

is defined by
o([p] = [a]) = [p«p] — [xal;
where
(@xp)j ke = (pjk)-
Example

Let X and Y be compact Hausdorff spaces, and f: X — Y continuous.

Then *: C(Y) — C(X) is a x-homomorphism, and (f*). is the map
£ KO(Y) — K9(X) from earlier.

Note: contravariant vs. covariant functoriality.
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Non-unital C*-algebras

Let A be a C*-algebra, not necessarily with a unit. The unitisation of A is

the C*-algebra
At =A@ C,

with multiplication

(a+z)(b+w)=ab+ wa+zb+ zw,

involution
(a+2z) ' =a"+zZ
and norm
la+ z|l = [la + z||5(a)-
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Non-unital C*-algebras

Let A be a C*-algebra, not necessarily with a unit. The unitisation of A is
the C*-algebra

At =AaC,

with multiplication

(a+z)(b+w)=ab+ wa+zb+ zw,

involution
(a+2z) ' =a"+zZ
and norm
la+ z|l = [la + z||5(a)-
Example
If X is a locally compact Hausdorff space, then Co(X)* = C(XT). J
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K-theory of non-unital C*-algebras

Let A be a C*-algebra. Let 7: AT — C be projection onto the factor C.
Definition

The even K-theory of A is the kernel of the map

Ty . Ko(A+) — Ko((C) =Z.
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Higher K-groups
Definition

For a C*-algebra A and n € Z>y,

Kn(A) = Ko(A® Go(R™)).
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Higher K-groups

Definition
For a C*-algebra A and n € Z>,

Kn(A) = Ko(A® Go(R™)).

Theorem (Bott periodicity)
For all such A and n,
Ko ia(A) = Kn(A).

We sometimes write K.(A) := Ko(A) & Ki(A).
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Stability and continuity

Theorem (Stability)
If two C*-algebras A and B are Morita equivalent, then for all n,

Kn(A) = Kn(B).
In particular, K,(A® K) = K,(A).
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Stability and continuity

Theorem (Stability)

If two C*-algebras A and B are Morita equivalent, then for all n,

Kn(A) = Kn(B).

In particular, K,(A® K) = K,(A).
Theorem (Continuity)

If (Aj)72; is a sequence of C*-algebras connected by x-homomorphisms
Ap — Ant1, then

lim Kn(Aj) = Kn(lim A;).

J J
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Direct sums
For a sequence of C*-algebras (A;)2, let

DA
j=1

be the completion of the algebraic direct sum in the norm

||(‘317 az, ..., amO? . )H = SUp ||aJ||AJ
J
Lemma
We have - -
K, (@ Aj) — P Ka(4).
j=1 j=1
Proof.

This is elementary for finite direct sums. By continuity, this extends to

infinite direct sums.

O

v
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Homotopy invariance

Let A and B be two C*-algebras.
Definition

Two x-homomorphisms f,g: A — B are homotopic if there is a path of

*-homomorphisms (f;)¢c[0,1]: A — B such that fy = f, fi = g and for all
acA,

t— fi(a)

is a continuous path in B.

Proposition

If f,g: A— B are homotopic, then they induce the same map

f = g1 Ki(A) = Ki(B).
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The six-term exact sequence

Theorem

Let A be a C*-algebra, and J C A a closed, *-closed, two-sided ideal.
Then there is an exact sequence

Ko(J) Ko(A) — Ko(A/J)

i ls

Ki(A/J) ~—— Ky (A) ~—— Ki(J)

Here we use Bott periodicity: Ka(J) = Ko(J).
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Examples

@ For any locally compact Hausdorff space X,

Kn(Co(X)) = K"(X).

Kn(G(R") =2 Kpp1(Go(R")) =0
Ko(Co([0,20))) = K1(Co([0,20))) =0

Ko(Go(R) % (Z/2)) =2 Ka(Go(R)  (2/2)) = 0

Peter Hochs (RU) K-theory of C*-algebras 18 June 18 /41



More examples
@ For any Hilbert space H,
Ko(KC(H)) = Ko(C) = Z Ki(K(H)) = Ki(C) = 0.
e For any infinite-dimensional, separable Hilbert space H,
Ko(B(H)) = Ki(B(H)) = 0.

e If K is a compact Lie group, then by Peter—Weyl,
Ko(C*(K)) = Ko( @D End(V))
VeR
= P Ko(End(V)) = P Z = R(K).

vek vek
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K3 via invertible matrices

If Ais a unital C*-algebra, let GL,(A) be the group of invertible n x n

matrices over A. We embed GL,(A) — GL,+1(A) by adding a 1 on the
bottom-right corner, and zeros everywhere else. Set

GLoo(A) = lim GLA(A).

Let GLoo(A)o < GLoo(A) be the connected component of the identity.
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K3 via invertible matrices

If Ais a unital C*-algebra, let GL,(A) be the group of invertible n x n
matrices over A. We embed GL,(A) — GL,+1(A) by adding a 1 on the
bottom-right corner, and zeros everywhere else. Set

GLoo(A) = lim GLA(A).

Let GLoo(A)o < GLoo(A) be the connected component of the identity.

Proposition

For every, possibly non-unital, C*-algebra A, there is an isomorphism of
abelian groups
GLoo(A1)/ GLoo(AT)o = K1 (A).

Peter Hochs (RU) K-theory of C*-algebras 18 June 20/ 41



Il K-theory of C*-algebras of reductive Lie groups
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The case of a real reductive group

For a real reductive Lie group G, the group C*-algebra C}(G) can be
described explicitly via representation theory. (See Tyrone's lectures.)

This can be used to describe Ko(C;(G)), but it gives more information.
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The reduced C*-algebra of a real reductive group
Let G be a connected, linear, real reductive Lie group.

Theorem (A. Wassermann, Clare—Crisp—Higson,
Clare-Higson-Song—Tang)
The reduced group C*-algebra of G is Morita equivalent to

Z Co(a/W)) x R,.

[Po]

P = MAN runs over the cuspidal parabolics

o is a discrete series representation of M

[P,o] = [P',0d’] if there is a k € K such that M'A’ = kMAk~—! and
Adio' = o

W, = {w € Nx(MA);Ad;, 0 Zo}/(KN M)

I(w,0): Ind$(c ®1) — IndS(Ad%, 0 ® 1) is the Knapp-Stein
intertwiner

o W/ ={we W, Il(w,o)eCl}

o W, = W, x R, for the R-group R, = (Z/2)".
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The K-theory C/(G): trivial contributions

Theorem
The reduced group C*-algebra of G is Morita equivalent to

Z Co(a/W.) x R,.

[P.o]

Peter Hochs (RU) K-theory of C*-algebras

18 June

23 /41



The K-theory C/(G): trivial contributions

Theorem
The reduced group C*-algebra of G is Morita equivalent to

Z Co(a/W.) x R,.

[P.o]

Lemma
If W, +# {e}, then
K.«(Co(a/W.) x R,) = 0.
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The K-theory C/(G): trivial contributions

Theorem
The reduced group C*-algebra of G is Morita equivalent to

Z Co(a/W.) x R,.

[P.o]

Lemma
If W, +# {e}, then
K.«(Co(a/W.) x R,) = 0.

Example

If dim(a) =1 and W, = W/, acts by reflections,

Ki(Co(a/W;) x Ry) = Ki(Go([0,00))) = 0.
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The K-theory C/(G): nontrivial contributions
Theorem (Knapp—Stein)

If W = {e}, then R, = (Z/2)dm(Ama)=dim(A) " and a is R,-equivariantly
isomorphic to RI™A) on which R, acts by reflections in the first
dim(Amax) — dim(A) coordinates.
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The K-theory C/(G): nontrivial contributions

Theorem (Knapp-Stein)

If W = {e}, then R, = (Z/2)dm(Ama)=dim(A) " and a is R,-equivariantly
isomorphic to RI™A) on which R, acts by reflections in the first
dim(Amax) — dim(A) coordinates.

Corollary
If W, = {e}, then

C()(Cl/Wé) X R, = CO(Rdim(Amax)) ® (Co(R) « (Z/2))®(dim(Amax)—dim(A))’
and

Kdim(Amae) (Co(a/W2) > Ry)
Kdim(Ans)+1(Co(a/W,) x R;)

Note: dim(Amax) = dim(G/K) mod 2.

Z
0
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The K-theory of C/(G)

Conclusion:
Kaim(c/k)(CF(G)) = @ Kaim(c/k)(Co(a/Wy) x R;)
[P,o]
= @ VA
[P.o],W)={e}
and

Kaim(c/k)+1(C/(G)) = 0.
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The discrete series

Suppose that G has a compact Cartan subgroup. Then it is a cuspidal
parabolic of itself, and C;(G) has the direct summand

D K(H,).

UEGdS

So Ko(C}(G)) has the direct summand

@ KO(IC(HU)) = @ Z.

O’Eéds O'EGds
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The discrete series

Suppose that G has a compact Cartan subgroup. Then it is a cuspidal
parabolic of itself, and C;(G) has the direct summand

P K(H).

O'Eéds

So Ko(C/(G)) has the direct summand

@ KO(IC(HU)) - @ 2.

€ Gys o€ Gys

The generator corresponding to o € Gas can be described as follows. Fix

v € H, of norm 1. Consider the matrix coefficient

my,v(g) = (o(g)v, v).

Then p, := d,m, , is an idempotent in C}(G), and its class generates
KO(’C(HO'))'
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Example: G = SL(2,R)

If G =SL(2,R), then we have a Morita equivalence

spherical princ. ser.  non-spherical princ. ser. hol. d.s. antihol. d.s.

% ~ X —— ——
C(6) ~ G(R/(2/2)) & Go(R) x(Z/2) &€ K(Hn )& K(Hn )
minimal parabolic

o=

maximal parabolic G
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Example: G = SL(2,R)

If G =SL(2,R), then we have a Morita equivalence

spherical princ. ser.  non-spherical princ. ser. o hol. d.s. antihol. d.s.
. % ~ ——
CH(G)~ G(R/(Z/2)) & Co(R)x(Z/2) &EDK(Hn+)® K(Hn,-)

.. . n=1
minimal parabolic

maximal parabolic G

So
Ko(CH(G)) = Ko(Go(R) x (Z/2)) @ é Ko(K(Hn,+)) & Ko(K(Hp,-)),
n=1

where every K-group on the right hand side is Z.
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Example: complex groups

Let G be a complex semisimple Lie group. Then there is one parabolic
P = MAN up to conjugacy, M is a torus, and all principal series

representations are irreducible. So W/ = W, for all o € M, and there is a
Morita equivalence

C:(G) ~ @ CO(a/WO') = CO(étemp)-
[P.o]
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Example: complex groups

Let G be a complex semisimple Lie group. Then there is one parabolic

P = MAN up to conjugacy, M is a torus, and all principal series
representations are irreducible. So W, = W, for all o € I\Aﬂ, and there is a
Morita equivalence

C:(G) ~ @ CO(a/WU) = CO(étemp)-
[P,o]

So

Kn(C(G)) = K"(Giemp) = €D K"(a),
Wo={e}

and
Kdim(G/K)(a) -7 Kdim(G/KHl(u) =0.

This case was worked out by Penington and Plymen in 1983.
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The Fredholm index

Consider the ideal IC(H) C B(H). We have the boundary map in the
six-term exact sequence

§: Ki(B(H)/K(H)) = Ko(K(H)) = Z.
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The Fredholm index

Consider the ideal IC(H) C B(H). We have the boundary map in the
six-term exact sequence

§: Ki(B(H)/K(H)) = Ko(K(H)) = Z.

Let F € B(H) be Fredholm. Then its class in B(H)/IC(H) is invertible,
and defines an element

[F] € Ki(B(H)/K(H)).

Proposition
Now
0[F] = index(F) = dim(ker(F)) — dim(H/im(F)).
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The abstract index

Whenever we have an ideal J C A and an element a € A invertible modulo
J, we can define

index,(a) := d[a] € Ko(J),
where
§: Ki(A/J) = Ko(J)

is the boundary map form the six-term exact sequence.
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The abstract index

Whenever we have an ideal J C A and an element a € A invertible modulo
J, we can define

index,(a) := d[a] € Ko(J),

where
d: Ki(A/J) = Ko(J)

is the boundary map form the six-term exact sequence.

In particular, if £ is a Hilbert A-module, then an A-Fredholm operator
F € L£(&) has an index

index,c(g)(F) S Ko(’C(g))

If £ is full, i.e.
span{(v,w);v,w e E} C A

is dense, then £ defines a Morita equivalence between K(£) and A, and we
obtain

index,C(g)(F) S Ko(A)
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The equivariant index

Let G be a locally compact group acting properly and isometrically on a
Riemannian manifold M, such that M/G is compact. Let D be a
G-equivariant elliptic, self-adjoint, odd-graded, first order differential
operator on a Z/2-graded Hermitian G-vector bundle E — M.
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The equivariant index

Let G be a locally compact group acting properly and isometrically on a
Riemannian manifold M, such that M/G is compact. Let D be a
G-equivariant elliptic, self-adjoint, odd-graded, first order differential
operator on a Z/2-graded Hermitian G-vector bundle E — M.

We constructed a Hilbert C*(G)-module £ by completing '<(E) in the
inner product

(s1,52)(g) = (s1,8 52)L2(E)-
The operator D defines a C*(G)-Fredholm operator F € £L(£), which is a

modification of
D

VD2 +1

Here C*(G) can be either the maximal or reduced group C*-algebra.
Definition

The equivariant index of D is

indexG(D) = indexK(g)(F) S Ko(C*(G)).
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Relation with classical indices
If G = K is compact, then

indexk (D) = [ker(D)] — [ker(D*)] € Ko(C*(K)) = R(K).

(This is the Fredholm index if K = {e}.)
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Relation with classical indices
If G = K is compact, then

indexx (D) = [ker(D)] — [ker(D*)] € Ko(C*(K)) = R(K).
(This is the Fredholm index if K = {e}.)

Suppose that M is the universal cover of a compact manifold X, and that

G =T = m(X). Let Dx be the operator on E/I" — X induced by D.
Consider the homomorphism

ZF max( ) —C

given by summing functions over I'.
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Relation with classical indices
If G = K is compact, then
indexx (D) = [ker(D)] — [ker(D*)] € Ko(C*(K)) = R(K).

(This is the Fredholm index if K = {e}.)

Suppose that M is the universal cover of a compact manifold X, and that
G =T = m(X). Let Dx be the operator on E/I" — X induced by D.
Consider the homomorphism

ZF max( ) —C

given by summing functions over . Then
(>_r)«indexr(D) = index(Dx) € Z.

So indexr (D) is a refinement of index(Dx). (The same can be achieved
via the trace 7(f) = f(e) on C*(I') via Atiyah's L%-index theorem.)
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Dirac operators on G/K

Let G be a connected Lie group. Let K < G be maximal compact, and
g =t ® p an orthogonal decomposition for a K-invariant inner product.
Suppose (for simplicity) that the map

Ad: K — SO(p)

lifts to -
Ad: K — Spin(p).

Then we view the standard representation S, of Spin(p) as a
representation of K.
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Dirac operators on G/K

Let G be a connected Lie group. Let K < G be maximal compact, and
g =t ® p an orthogonal decomposition for a K-invariant inner product.
Suppose (for simplicity) that the map

Ad: K — SO(p)

lifts to -

Ad: K — Spin(p).
Then we view the standard representation S, of Spin(p) as a
representation of K.

Let {Xi,...,X,} be an orthonormal basis of p. For V € K, consider the
Dirac operator

n
D¢ =Y  Lx ®c(X)) @1y
j=1

(C®(G) S o V)~
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The discrete series

Theorem (Parthasarathy 1972, Atiyah—Schmid 1977)

Let G be a connected, real semisimple Lie group with rank(G) = rank(K).
Let V € K, and let \ be its highest weight. Then

o if \+ pk is regular, then ker;2(D¥ / ) Is the discrete series
representation of G with Harish—Chandra parameter A + pg
o if A+ pk Is singular, then kerLz(D(‘;//K) =0.

Theorem (Connes—Moscovici 1982)

Let G be a connected, real semisimple Lie group with rank(G) > rank(K).
Then for all V € K, kerLz(Dg/K) =0.
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The Connes—Kasparov conjecture

Using the equivariant index, we obtain information from DZ/K for any G
and V.

Definition
Dirac induction is the map

D-Ind$ : R(K) = K.(C(G))

given by D-Indg[V] = indexg (D¢, )-
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The Connes—Kasparov conjecture

Using the equivariant index, we obtain information from Dé;//K for any G
and V.

Definition
Dirac induction is the map

D-Ind$ : R(K) = K.(C(G))

given by D-Indg[V] = indexg (D¢, )-

Conjecture (Connes—Kasparov)

For almost connected Lie groups G, Dirac induction is an isomorphism of
abelian groups.
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Proofs of the Connes—Kasparov conjecture

Conjecture (Connes—Kasparov)

For almost connected Lie groups G, Dirac induction V indexG(Dg / k) is
an isomorphism of abelian groups R(K) = K.(C}(G)).

Proofs:
e for semisimple/reductive groups:

» by computing C}(G): A. Wassermann 1987 + recent work by Clare,
Crisp, Higson, Song, Tang and Vogan
» directly: V. Lafforgue 2002, Afgoustidis 2019

@ in general: Chabert—Echterhoff-Nest 2003.
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Example: the discrete series

Suppose that G has discrete series representations, and let 7 be a discrete
series representation. We saw that 7 contributes a generator

[po] := [domy.v] € Ko(K(Hy)) C Ko(C/(G))-

This generator equals
[po] = D-Indg[V] = indexc (DY, ¢):

with D‘G//K as in Parthasarathy’s/Atiyah—Schmid’s construction.
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Classifying space for proper actions

Let G be a locally compact, Hausdorff, second countable group.
Definition
A classifying space for proper actions by G is a topological space EG
with a proper action by G, such that for any proper G-space X,

@ there is a G-equivariant continuous map X — EG

@ any two such maps are G-equivariantly homotopic.

This exists and is unique up to G-equivariant homotopy equivalence.

Example
If G is a connected Lie group, we can take EG = G/K by Abels’ theorem.J
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The Baum—Connes conjecture

Conjecture (Baum—Connes 1982)

The equivariant index defines an isomorphism of abelian groups

RKS(EG) — K.(C/(G)),

where RKC denotes representable equivariant K-homology.

Intuitively, RKC(EG) consists of homotopy classes of abstract
G-equivariant elliptic operators on proper G-spaces X such that X/G is
compact.

The idea is that this is more computable than K.(C/(G)).
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The Baum—Connes conjecture

Conjecture (Baum—Connes 1982)

The equivariant index defines an isomorphism of abelian groups

RKS(EG) — K.(C/(G)),

where RKC denotes representable equivariant K-homology.

Intuitively, RKC(EG) consists of homotopy classes of abstract
G-equivariant elliptic operators on proper G-spaces X such that X/G is
compact.

The idea is that this is more computable than K.(C/(G)).
The conjecture has been proved for many classes of groups.

An important open case is non-cocompact lattices in Lie groups with real
rank > 2, e.g. SL(3,Z).
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Special cases

o If G is a connected, real Lie group, then
RKG(EG) = Kg(G/K) = R(K)

via [D‘G//K] > [V], and the Baum—Connes conjecture becomes the
Connes—Kasparov conjecture.

@ The Novikov conjecture in manifold topology (rational injectivity),
where G = m1(X) as earlier.
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Topics not covered—a non-exhaustive list

o KK-theory: KK(A, B), encodes relations/maps between K,(A) and
K.(B)

@ extracting information from K-theory via pairing with cyclic
cohomology or traces, e.g. orbital integrals
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Peter Hochs (RU)

Thank you

K-theory of C*-algebras
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