The Mackey-Rieffel-Green mashine

Siegfried Echterhoff

WWU Münster

AIM-RTNG Language School
May 31, 2021

AIM of this lecture

Reminder: If $\alpha: G \rightarrow \operatorname{Aut}(A)$ is an action, we defined the maximal and reduced crossed products $A \rtimes_{\alpha} G$ and $A \rtimes_{\alpha, \text { red }} G$ as completions of $C_{c}(G, A)$ with respect to certain C^{*}-norms.
AIM: Describe (if possible) the spaces

$$
\left(A \rtimes_{\alpha} G\right)^{\wedge} \quad \text { and } \quad \operatorname{Prim}\left(A \rtimes_{\alpha} G\right) \quad \text { via }
$$

(1) the spaces \widehat{A} resp. $\operatorname{Prim}(A)$.
(2) the action $G \curvearrowright \operatorname{Prim}(A),(g, P) \mapsto g \cdot P:=\alpha_{g}(P)$.
(3) The representation theory of $A_{P} \rtimes G_{P}, P \in \operatorname{Prim}(A)$, with $G_{P}:=\{g \in G: g \cdot P=P\}$ the stabilizerof P in G and A_{P} the simple subquotient of A correponding to P.

This will generalize Mackey's theory for group extensions.
Convention: In this lecture we will ignore all modular functions!

Group extensions

Let $G:=N \rtimes H$ be a semi-direct product group. We get an action

$$
\alpha: H \rightarrow \operatorname{Aut}\left(C^{*}(N)\right) ; \quad \alpha_{h}(\varphi)(n):=\varphi\left(h^{-1} \cdot n\right) \quad \forall \varphi \in C_{c}(N)
$$

If $V: N \rtimes H \rightarrow U M(B)$ is a unitary representation of G, let $\widetilde{\left.V\right|_{N}}: C^{*}(N) \rightarrow \mathcal{B}(H)$ be the integrated form of $\left.V\right|_{N}$. Then $\left(\left.V\right|_{N},\left.V\right|_{H}\right)$ is a covariant representation of $\left(C^{*}(N), H, \alpha\right)$.

We get an isomorphism $C^{*}(N \rtimes H) \cong C^{*}(N) \rtimes_{\alpha} H$ via

$$
\Phi: C_{c}(N \rtimes H) \rightarrow C_{c}\left(H, C_{c}(N)\right) ; \quad \Phi(f)(h)(n):=f(n, h) .
$$

More generally: if $N \triangleleft G$, then there exist an action of $\dot{G}:=G / N$ on $C^{*}(N) \otimes \mathcal{K}(H)$ such that

$$
C^{*}(G) \otimes \mathcal{K}(H) \cong\left(C^{*}(N) \otimes \mathcal{K}(H)\right) \rtimes_{\alpha} \dot{G}
$$

(or use Phil Green's theory of twisted crossed products instead.)

Hilbert C^{*}-modules

Recall that a Hilbert A-module is a right Banach A-module \mathcal{X} together with an A-valued inner product

$$
\langle\cdot, \cdot\rangle_{A}: \mathcal{X} \times \mathcal{X} \rightarrow A
$$

such that $\langle\xi, \xi\rangle_{A}>0$ iff $\xi \neq 0$ and $\forall \xi, \eta \in \mathcal{X}, a \in A$:

$$
\langle\xi, \eta\rangle_{A}=\langle\eta, \xi\rangle_{A}^{*} \quad \text { and } \quad\langle\xi, \eta\rangle_{A} a=\langle\xi, \eta a\rangle_{A}
$$

We say that \mathcal{X} is full if $\overline{\operatorname{span}}\left\{\langle\xi, \eta\rangle_{A}: \xi, \eta \in \mathcal{X}\right\}=A$.
The algebra of adjointable operators
$\mathcal{L}_{A}(\mathcal{X}):=\left\{T: \mathcal{X} \rightarrow \mathcal{X}: \exists T^{*}: \mathcal{X} \rightarrow \mathcal{X}\right.$ s.t $\left.\langle T \xi, \eta\rangle_{A}=\left\langle\xi, T^{*} \eta\right\rangle_{A}\right\}$. becomes a C^{*}-algebra w.r.t. operator norm. Recall also the ideal of compact operators

$$
\mathcal{K}(\mathcal{X})=\overline{\operatorname{span}}\left\{\Theta_{\xi, \eta}: \xi, \eta \in \mathcal{X}\right\} \quad \Theta_{\xi, \eta}(\zeta)=\xi \cdot\langle\eta, \zeta\rangle_{A} .
$$

Morita equivalence

Definition Two C^{*}-algebras A, B are called Morita equivalent, if there exists a full Hilbert B-module \mathcal{X} and an isomorphism $\Phi: A \xlongequal{\cong} \mathcal{K}(\mathcal{X})$. We call (\mathcal{X}, Φ) an A - B-equivalence bimodule.
Notice: We obtain a left A-valued inner product on \mathcal{X} by ${ }_{A}\langle\xi, \eta\rangle:=\Phi^{-1}\left(\Theta_{\xi, \eta}\right)$. This satisfies the compatibility relation

$$
{ }_{A}\langle\xi, \eta\rangle \zeta=\xi\langle\eta, \zeta\rangle_{B} \quad \forall \xi, \eta, \zeta \in \mathcal{X}
$$

Moreover, we get $B \cong \mathcal{K}\left({ }_{A} \mathcal{X}\right)$!
There is an inverse B - A-equivalence bimodule $\left(\mathcal{X}^{*}, \Phi^{*}\right)$ with $\mathcal{X}^{*}=\left\{\xi^{*}: \xi \in \mathcal{X}\right\}$ with inner products $\left\langle\xi^{*}, \eta^{*}\right\rangle_{A}:={ }_{A}\langle\xi, \eta\rangle$ and ${ }_{B}\left\langle\xi^{*}, \eta^{*}\right\rangle:=\langle\xi, \eta\rangle_{B}$ and actions

$$
\Phi^{*}(b) \xi^{*}:=\left(\xi b^{*}\right)^{*}, \quad\left(\xi^{*} a\right):=\left(\Phi\left(a^{*}\right) \xi\right)^{*}
$$

All these operations are encoded in the Linking-algebra

$$
L(\mathcal{X}):=\left(\begin{array}{cc}
A & \mathcal{X} \\
\mathcal{X}^{*} & B
\end{array}\right) .
$$

Examples for Morita equivalences

1. If \mathcal{X} is any full Hilbert B-module, then $\left(\mathcal{X}, \mathrm{id}_{\mathcal{K}}\right)$ is a $\mathcal{K}(\mathcal{X})$ - B equivalence bimodule.
2. Every Hilbert space H gives the $\mathcal{K}(H)$ - \mathbb{C} equivalence bimodule $\left(H, \mathrm{id}_{\mathcal{K}}\right)$.
3. If A is a C^{*}-algebra, then $\left(A, \mathrm{id}_{A}\right)$ becomes an $A-A$ equivalence bimodule w.r.t $\langle a, b\rangle_{A}=a^{*} b$.
4. Combining (2) and (3) we get an $A \otimes \mathcal{K}(H)-A$ equivalence bimodule $A \otimes H$ w.r.t.

$$
\langle a \otimes \xi, b \otimes \eta\rangle_{A}=a^{*} b\langle\xi, \eta\rangle_{\mathbb{C}}
$$

5. More interesting examples will follow below!

Morita equivalences preserve: the spaces $\operatorname{Rep}(A), \widehat{A}, \operatorname{Prim}(A)$, nuclearity, simplicity, type I, CCR, continuous trace, K-theory, etc.

Exceptions: unitality, commutativity!

The Morita category

The Morita category $\mathcal{M o r C}{ }^{*}$ is the category with

1. C^{*}-algebras as objects, and
2. $\operatorname{Mor}(A, B)$ consisting of equivalence classes of pairs (\mathcal{X}, Φ) with \mathcal{X} a Hilbert B-module and $\Phi: A \rightarrow \mathcal{L}_{B}(\mathcal{X})$ a $*$-hom..

Here

$$
\left(\mathcal{X}_{1}, \Phi_{1}\right) \sim\left(\mathcal{X}_{2}, \Phi_{2}\right) \Longleftrightarrow \Phi_{1}(A) \mathcal{X}_{1} \cong \Phi_{2}(A) \mathcal{X}_{2}
$$

Composition of $\left(\mathcal{X}_{1}, \Phi_{1}\right) \in \operatorname{Mor}(A, B)$ with $\left(\mathcal{X}_{2}, \Phi_{2}\right) \in \operatorname{Mor}(B, C)$ is defined via

$$
\left(\mathcal{X}_{2}, \Phi_{2}\right) \circ\left(\mathcal{X}_{1}, \Phi_{1}\right)=\left(\mathcal{X}_{1} \otimes_{B} \mathcal{X}_{2}, \Phi_{1} \otimes 1\right) \in \operatorname{Mor}(A, C)
$$

Here $\mathcal{X}_{1} \otimes_{B} \mathcal{X}_{2}$ is the Hausdorff completion of $\mathcal{X}_{1} \odot \mathcal{X}_{2}$ w.r.t

$$
\left\langle\xi_{1} \otimes \eta_{1}, \xi_{2} \otimes \eta_{2}\right\rangle_{C}=\left\langle\eta_{1}, \Phi\left(\left\langle\xi_{1}, \xi_{2}\right\rangle_{B}\right) \eta_{2}\right\rangle_{C}
$$

The Morita category

1. The identity morphisms id $_{A}$ of A is represented by $\left(A, \mathrm{id}_{A}\right)$, since $A \otimes_{A} \mathcal{X} \cong \Phi(A) \mathcal{X}$ for every $(\mathcal{X}, \Phi) \in \operatorname{Mor}(A, B)$.
2. The isomorphisms in $\operatorname{Mor}(A, B)$ are the $A-B$ Morita equivalences (\mathcal{X}, Φ) with inverse $\left(\mathcal{X}^{*}, \Phi^{*}\right)$: We have

$$
\begin{array}{lll}
\mathcal{X}^{*} \otimes_{A} \mathcal{X} \cong B & \text { via } \quad \xi^{*} \otimes \eta \mapsto\langle\xi, \eta\rangle_{B} \\
\mathcal{X} \otimes_{B} \mathcal{X}^{*} \cong A & \text { via } & \xi \otimes \eta^{*} \mapsto{ }_{A}\langle\xi, \eta\rangle .
\end{array}
$$

3. For every C^{*}-algebra B we have $\operatorname{Rep}(B)=\operatorname{Mor}(B, \mathbb{C})$. Thus composition with an element on $(\mathcal{X}, \Phi) \in \operatorname{Mor}(A, B)$ induces

$$
\operatorname{Ind}^{\mathcal{X}}: \operatorname{Rep}(B) \rightarrow \operatorname{Rep}(A) ;(H, \pi) \mapsto\left(\mathcal{X} \otimes_{B} H, \Phi \otimes 1\right)
$$

It is very easy to check that this preserves weak containment.
4. Composition with a Morita equivalence induces homeomorphisms $\widehat{A} \cong \widehat{B}$ (and similarly $\operatorname{Prim}(A) \cong \operatorname{Prim}(B)$.)

Mackey induction

Let $\alpha: G \rightarrow \operatorname{Aut}(A)$ be an action, $H<G$ a closed subgroup.
Define a $C_{c}(H, A)$-valued inner product on $C_{c}(G, A)$ via

$$
\langle\xi, \eta\rangle_{C_{c}(H, A)}=\left.\left(\xi^{*} * \eta\right)\right|_{H}
$$

and right action of $\varphi \in C_{c}(H, A)$ on $\xi \in \mathcal{X}_{0}$ by

$$
\xi \cdot \varphi(s):=\left.\xi\right|_{s H} * \varphi=\int_{H} \xi(s h) \alpha_{s h}\left(\varphi\left(h^{-1}\right)\right) d h
$$

Then \mathcal{X}_{0} completes to a Hilbert $A \rtimes_{\alpha} H$-module \mathcal{X} and we have a left action

$$
\Phi: A \rtimes_{\alpha} G \rightarrow \mathcal{L}(\mathcal{X}) ; \Phi(f) \xi=f * \xi \quad f, \xi \in C_{c}(G, A)
$$

Composition with (\mathcal{X}, Φ) in \mathcal{M} orC ${ }^{*}$ gives Rieffel's version of the Mackey induction

$$
\operatorname{Ind}_{H}^{G}: \operatorname{Rep}(A \rtimes H) \rightarrow \operatorname{Rep}(A \rtimes G) .
$$

It automatically preserves weak containment!

The imprimitivity theorem

Let $\mathcal{X}=\overline{C_{c}(G, A)}$ be the Hilbert $A \rtimes H$-module of the previous slide. Then there is an action

$$
M: C_{0}(G / H) \rightarrow \mathcal{L}(\mathcal{X}) ;(M(f) \xi)(s)=f(s H) \xi(s)
$$

Together with the convolution action of $C_{c}(G, A)$ this combines to a left action

$$
\Phi:\left(A \otimes C_{0}(G / H)\right) \rtimes_{\alpha \otimes \tau} G \stackrel{\cong}{\leftrightarrows} \mathcal{K}(\mathcal{X}) .
$$

This gives Phil Green's imprimitivity theorem '78:

$$
\left(A \otimes C_{0}(G / H)\right) \rtimes_{\alpha \otimes \tau} G \sim_{M} A \rtimes_{\alpha} H .
$$

Corollary: Mackey's imprimitivity theorem
For a cov. rep. $\pi \rtimes U \in \operatorname{Rep}\left(A \rtimes_{\alpha} G\right)$ the following are equivalent

1. $\pi \rtimes U$ is induced from some $\rho \rtimes V \in \operatorname{Rep}\left(A \rtimes_{\alpha} H\right)$;
2. \exists a nondeg. rep. $P: C_{0}(G / H) \rightarrow \mathcal{B}\left(H_{\pi}\right)$ s.t.

$$
(\pi \otimes P) \rtimes U \in \operatorname{Rep}\left(\left(A \otimes C_{0}(G / H)\right) \rtimes_{\alpha \otimes \tau} G\right) .
$$

A (slight) generalization

Let $H<G$ and $\beta: H \rightarrow \operatorname{Aut}(B)$ given. Define the induced algebra $\operatorname{Ind}_{H}^{G} B:=\left\{F: G \rightarrow B: F\right.$ cont. $\left.\left\{\begin{array}{c}F(s h)=\beta_{h^{-1}}(F(s)) \\ (s H \mapsto\|F(s)\|) \in C_{0}(G / H)\end{array}\right\}\right\}$ with action $\quad(\operatorname{Ind} \beta(s) F)(t):=F\left(s^{-1} t\right)$.
Special case If $\alpha: G \rightarrow \operatorname{Aut}(A)$, then :

$$
\operatorname{Ind}_{H}^{G}\left(A,\left.\alpha\right|_{H}\right) \cong C_{0}(G / H, A) \quad \text { via } \quad F \mapsto\left[s H \mapsto \alpha_{s}(F(s))\right]
$$

Then $\mathcal{X}_{0}=C_{c}(G, B)$ completes to an $\operatorname{Ind}_{H}^{G} B \rtimes_{\operatorname{Ind} \alpha} G-B \rtimes_{\alpha} H$ equivalence bimodule (\mathcal{X}, Φ) with respect to

$$
\begin{aligned}
&\langle\xi, \eta\rangle_{c}(H, B) \\
&(h)=\int_{G} \xi\left(t^{-1}\right)^{*} \beta_{h}\left(\eta\left(t^{-1} h\right)\right) d h \\
& \xi \cdot \varphi(s)=\int_{h} \beta_{h}\left(\xi(s h) \varphi\left(h^{-1}\right)\right) d h \\
&(\Phi(f) \xi)(s)=\int_{G} f(t, s) \xi\left(t^{-1} s\right) d t \\
& \xi, \eta \in \mathcal{X}_{0}, \varphi \in C_{c}(H, B), f \in C_{c}\left(G, \operatorname{lnd}_{H}^{G} B\right) .
\end{aligned}
$$

The generalized imprimitivity theorem

In particular, we obtain a homeomorphism

$$
\operatorname{Ind}^{\mathcal{X}}:\left(B \rtimes_{\beta} H\right)^{\wedge} \rightarrow\left(\operatorname{Ind}_{H}^{G} B \rtimes_{\operatorname{lnd} \beta} G\right)^{\wedge}
$$

and similarly $\quad \operatorname{Prim}\left(B \rtimes_{\beta} H\right) \cong \operatorname{Prim}\left(\operatorname{Ind}_{H}^{G} B \rtimes_{\operatorname{Ind} \beta} G\right)$.
Theorem E '90 For a system (A, G, α) TFAE

1. $(A, G, \alpha) \cong\left(\operatorname{Ind}_{H}^{G} B, G, \operatorname{Ind} \beta\right)$ for some (B, H, β);
2. \exists a G-equivariant continuous map $\varphi: \operatorname{Prim}(A) \rightarrow G / H$.

Proof $(2) \Rightarrow(1)$: If φ exists, let $J:=\cap\{P: \varphi(P)=e H\}$ and
$B:=A / J$. Then use the Dauns-Hofmann theorem to check that

$$
\Phi: A \xlongequal{\cong} \operatorname{Ind}_{H}^{G} B ; \quad \Phi(a)(s):=\alpha_{s}(a)+J
$$

is an isomorphism.

An application

Recall the Mautner group $\mathbb{C}^{2} \rtimes \mathbb{R}$ with $x \cdot(z, w)=\left(e^{i x} z, e^{2 \pi i x} w\right)$. The action $\hat{\alpha}$ on $\widehat{\mathbb{C}^{2}} \cong \mathbb{C}^{2}$ is given by $x \cdot(z, w)=\left(e^{-i x} z, e^{-2 \pi i x} w\right)$. Hence

$$
C^{*}\left(\mathbb{C}^{2} \rtimes \mathbb{R}\right) \cong C^{*}\left(\mathbb{C}^{2}\right) \rtimes_{\alpha} \mathbb{R} \cong C_{0}\left(\mathbb{C}^{2}\right) \rtimes_{\hat{\alpha}} \mathbb{R}
$$

There is a large invariant ideal $I:=C_{0}\left((\mathbb{C} \backslash\{0\})^{2}\right)$ in $C_{0}\left(\mathbb{C}^{2}\right)$ which gives a large ideal

$$
I \rtimes_{\hat{\alpha}} \mathbb{R} \subseteq C^{*}\left(\mathbb{C}^{2} \rtimes \mathbb{R}\right)
$$

Consider $\varphi: \widehat{l}:=(\mathbb{C} \backslash\{0\})^{2} \rightarrow \mathbb{T} \cong \mathbb{R} / \mathbb{Z} ; \quad(z, w) \mapsto \frac{w}{\mid w}$.
We get $\left.I \cong \operatorname{Ind}_{\mathbb{Z}}^{\mathbb{R}} C_{0}\left(\varphi^{-1}(\{1\})\right)=\operatorname{Ind}_{\mathbb{Z}}^{\mathbb{R}} C_{0}\left(\mathbb{C}^{*} \times(0, \infty)\right)\right)$ w.r.t.

$$
\mathbb{Z} \curvearrowright \mathbb{C}^{*} \times(0, \infty) \cong \mathbb{T} \times(0, \infty)^{2} \quad n \cdot(z, s, t)=\left(e^{-i n} z, s, t\right)
$$

Hence
$I \rtimes_{\alpha} \mathbb{R} \sim_{M} C_{0}\left(\mathbb{T} \times(0, \infty)^{2}\right) \rtimes_{\beta} \mathbb{Z} \cong\left(C(\mathbb{T}) \rtimes_{\beta} \mathbb{Z}\right) \otimes C_{0}\left((0, \infty)^{2}\right)$.

Mackey's orbit method

Recall that a locally closed subset $E \subseteq \operatorname{Prim}(A)$ corresponds to a subquotient I / J with $J=\operatorname{ker} E\left(=\cap_{P \in E} P\right), I=\operatorname{ker}(\bar{E} \backslash E)$.
For $\alpha: G \rightarrow \operatorname{Aut}(A)$ let $G \curvearrowright \operatorname{Prim}(A) ;(s, P) \mapsto s \cdot P:=\alpha_{s}(P)$.
We say this action is regular if the following hold
(1) all orbits $G(P)=\{s \cdot P: s \in G\}$ are locally closed in $\operatorname{Prim}(A)$.
(2) For all P, the map $G / G_{P} \rightarrow G(P) ; s G_{P} \mapsto s \cdot P$ is a homeomorphism (with $G_{P}:=\{s \in G: s \cdot P=P\}$).
(3) A is separable, or $\operatorname{Prim}(A) / G$ is almost Hausdorff.

Item (1) implies that $\forall P \in \operatorname{Prim}(A) \exists$ a G-invariant subquotient $A_{G(P)}=I_{G(P)} / J_{G(P)}$ of A such that $G(P) \cong \operatorname{Prim}\left(A_{G(P)}\right)$.
Item (2) together with the theorem on the previous slide gives
$A_{G(P)} \cong_{G} \operatorname{Ind}_{G_{P}}^{G} A_{P} \quad$ hence $\quad A_{G(P)} \rtimes_{\alpha} G \sim_{M} A_{P} \rtimes_{\alpha_{P}} G_{P}$, for $A_{P}:=I_{P} / P$ the subquotient of A with $\{P\}=\operatorname{Prim}\left(A_{P}\right)$.
Item (3) implies that every primitive ideal (resp. irreducible rep.) of $A \rtimes_{\alpha} G$ belongs to exactly one subquotient $A_{G(P)}$

The orbit method

Indeed, if $0 \rightarrow I \rightarrow A \rightarrow A / I \rightarrow 0$ is a short exact sequence of G-algebras, we always get a short exact sequence

$$
0 \rightarrow I \rtimes_{\alpha} G \rightarrow A \rtimes_{\alpha} G \rightarrow(A / I) \rtimes_{\alpha} G \rightarrow 0
$$

of the full crossed products! (Not always true for $A \rtimes_{\text {red }} G$!)
In particular, G-invariant subquotients I / J of A correspond to subquotients $(I / J) \rtimes_{\alpha} G=\left(I \rtimes_{\alpha} G\right) /\left(J \rtimes_{\alpha} G\right)$ of $A \rtimes_{\alpha} G$.
Thus, under the assumptions of the previous slide we get

$$
\operatorname{Prim}\left(A \rtimes_{\alpha} G\right)=\bigcup_{G(P) \in \operatorname{Prim}(A) / G} \operatorname{Prim}\left(A_{G(P)} \rtimes_{\alpha} G\right)
$$

and $\operatorname{Prim}\left(A_{G(P)} \rtimes_{\alpha} G\right)$ is homeomorphic to $\operatorname{Prim}\left(A_{P} \rtimes_{\alpha} G_{P}\right)$ via Mackey induction!
Similarly

$$
\left(A \rtimes_{\alpha} G\right)^{\wedge}=\bigcup_{G(P) \in \operatorname{Prim}(A) / G}\left(A_{G(P)} \rtimes_{\alpha} G\right)^{\wedge}
$$

and $\left(A_{G(P)} \rtimes_{\alpha} G\right)^{\wedge} \cong\left(A_{P} \rtimes_{\alpha} G_{P}\right)^{\wedge}$ via Mackey induction!

Mackey's little group method

Question: How do A_{P} and $A_{P} \rtimes_{\alpha} G_{P}$ look like?
Special case 1:
If $A=C_{0}(X)$, then $X \cong \widehat{A}(\cong \operatorname{Prim}(A))$ via $x \mapsto \epsilon_{X}$ (eval. at $\left.x\right)$.
Then $A_{x}=C(\{x\}) \cong \mathbb{C}$, and $A_{x} \rtimes G_{x} \cong C^{*}\left(G_{x}\right)$. We get

$$
\left(C_{0}(X) \rtimes_{\alpha} G\right)^{\wedge}=\bigcup_{G(x) \in X / G}\left\{\operatorname{lnd}_{G_{x}}^{G}\left(\epsilon_{x} \rtimes \rho\right): \rho \in \widehat{G_{x}}\right\}
$$

(and similarly for $\operatorname{Prim}\left(C_{0}(X) \rtimes_{\alpha} G\right)$).

An Example

Let $G=\mathbb{R}^{2} \rtimes \mathrm{SL}_{2}(\mathbb{R})$. Write $H:=\mathrm{SL}_{2}(\mathbb{R})$. Then

$$
C^{*}(G) \cong C^{*}\left(\mathbb{R}^{2}\right) \rtimes S L_{2}(\mathbb{R}) \cong C_{0}\left(\mathbb{R}^{2}\right) \rtimes_{\alpha} S L_{2}(\mathbb{R})
$$

with $\mathrm{SL}_{2}(\mathbb{R}) \curvearrowright \mathbb{R}^{2} ;(A, x) \mapsto A^{t} x$.
Then $\mathbb{R}^{2} / H=\left\{\binom{0}{0}\right\} \dot{\cup}\left\{\mathbb{R}^{2} \backslash\left\{\binom{0}{0}\right\}\right\}$ with stabilizers

$$
H_{\binom{0}{0}}=S L_{2}(\mathbb{R}) \quad \text { and } \quad H_{\binom{1}{0}}=\left\{\left(\begin{array}{ll}
1 & 0 \\
a & 1
\end{array}\right): a \in \mathbb{R}\right\} \cong \mathbb{R}
$$

Thus

$$
\widehat{G}=\widehat{\operatorname{SL}_{2}(\mathbb{R})} \dot{\cup}\left\{\operatorname{lnd}_{\mathbb{R}^{2} \rtimes \mathbb{R}}^{G} \chi_{\binom{1}{0}} \rtimes \mu: \mu \in \widehat{\mathbb{R}}\right\}
$$

where $\chi_{\binom{1}{0}}\binom{x}{y}=e^{2 \pi i x}$ is the character of \mathbb{R}^{2} corresponding to the vector $\binom{1}{0} \in \mathbb{R}^{2} \cong \widehat{\mathbb{R}^{2}}$.

Mackey's little group method

Special case 2: Let $\alpha: G \rightarrow \operatorname{Aut}(A)$ with A type I. Then
$\widehat{A} \cong \operatorname{Prim}(A) \quad$ via $\quad \pi \mapsto \operatorname{ker} \pi \quad$ and $\quad A_{\pi}=\mathcal{K}\left(H_{\pi}\right)$,
Note: $\quad \operatorname{Aut}\left(\mathcal{K}\left(H_{\pi}\right)\right)=\operatorname{PU}\left(H_{\pi}\right)=\mathcal{U}\left(H_{\pi}\right) / \mathbb{T}$.
Let $\alpha_{\pi}: G_{\pi} \rightarrow P \mathcal{U}\left(H_{\pi}\right)=\operatorname{Aut}\left(\mathcal{K}\left(H_{\pi}\right)\right)$ be the action of G_{π} and let $c: P \mathcal{U} \rightarrow \mathcal{U}$ be a Bore section. Then $W:=c \circ \alpha_{\pi}: G_{\pi} \rightarrow \mathcal{U}\left(H_{\pi}\right)$ satisfies $\operatorname{Ad}\left(W_{s} W_{t}\right)=\alpha_{\pi}(s) \alpha_{\pi}(t)=\alpha_{\pi}(s t)=\operatorname{Ad} W_{s t}$.
Thus there exist a Bore map $\omega_{\pi}: G_{\pi} \times G_{\pi} \rightarrow \mathbb{T}$ such that

$$
W_{s} W_{t}=\omega_{\pi}(s, t) W_{s t}
$$

On elements $s, t, r \in G_{\pi}$ one easily checks that $\omega_{\pi} \in Z^{2}\left(G_{\pi}, \mathbb{T}\right)$. Theorem (Mackey)
$\mathcal{K}\left(H_{\pi}\right) \otimes C^{*}\left(G_{\pi}, \omega_{\pi}^{-1}\right) \cong \mathcal{K}\left(H_{\pi}\right) \rtimes_{\alpha} G_{\pi} \quad$ via $\quad k \otimes f \mapsto\left[s \mapsto f(s) k W_{s}^{*}\right]$ and

$$
\left(\mathcal{K}\left(H_{\pi}\right) \rtimes_{\alpha} G_{\pi}\right)^{\wedge}=\left\{(\pi \otimes 1) \rtimes(W \otimes V): V \in\left(G_{\pi}, \omega_{\pi}^{-1}\right)^{\wedge}\right\}
$$

Mackey's little group method: An application

Theorem (Mackey-Takesaki-Green) Suppose that A is type I and $\alpha: G \rightarrow \operatorname{Aut}(A)$ satisfies the regularity conditions (1)-(3). Then $A \rtimes_{\alpha} G$ is type I if and only if $C^{*}\left(G_{\pi}, \omega_{\pi}^{-1}\right)$ is type I for all $\pi \in \widehat{A}$.

Proof $A \rtimes_{\alpha} G$ is type I if and only if

$$
\forall \rho \in\left(A \rtimes_{\alpha} G\right)^{\wedge}: \quad \rho\left(A \rtimes_{\alpha} G\right) \supseteq \mathcal{K}\left(H_{\rho}\right) .
$$

Since every ρ belongs to $\left(A_{G(\pi)} \rtimes_{\alpha} G\right)^{\wedge}$ for one orbit $G(\pi) \subseteq \widehat{A}$, it suffices to show that $A_{G(\pi)} \rtimes_{\alpha} G$ is type I for all $\pi \in \widehat{A}$. But

$$
A_{G(\pi)} \rtimes_{\alpha} G \sim_{M} A_{\pi} \rtimes_{\alpha} G_{\pi} \sim_{M} C^{*}\left(G_{\pi}, \omega_{\pi}^{-1}\right)
$$

and the type I property is preserved by Morita equivalence.
Note: the theorem always applies when G is compact!

Mackey's little group method: An application

Theorem (Dixmier-Pukanszky) Let G be a real (locally) algebraic group. Then $C^{*}(G)$ is type I
Rough idea of Proof: Show by induction on $\operatorname{dim}(G)$ that $C^{*}(G)$ type I. Easy if $\operatorname{dim}(G)=1$. If $\operatorname{dim}(G)>1$ there are two cases: Case 1: G is reductive. Then the result is due to Harish Chandra.

Case 2: Let N denote the nilradical of G. Then $G \cong N \rtimes R$ with N unipotent and R reductive. Thus we may decompose

$$
C^{*}(G) \cong C^{*}(N) \rtimes_{\alpha} R
$$

By Kirillov, we know that

$$
\widehat{N} \cong \mathfrak{n}^{*} / \operatorname{Ad}^{*}(N) \text { hence } \widehat{N} / R=\widehat{N} / G \cong \mathfrak{n}^{*} / \operatorname{Ad}^{*}(G)
$$

Since the G-action is algebraic, the orbits are locally closed and the Mackey machine applies. Hence

$$
C^{*}(G) \text { type I } \Longleftrightarrow \forall \pi \in \widehat{N}: C^{*}\left(R_{\pi}, \omega_{\pi}^{-1}\right) \text { type I }
$$

But $\operatorname{dim}\left(R_{\pi}\right)<\operatorname{dim}(G)$ (need some extra care for $\omega_{\pi}^{-1}!$)

The Baum-Connes conjecture

The Baum-Connes conjecture predicted that a certain map

$$
\mu: K_{*}^{t o p}(G, A) \rightarrow K_{*}\left(A \rtimes_{\mathrm{red}} G\right)
$$

is an isomorphism (not always true, but very often).
For (almost) connected G, this implies the
Connes-Kasparov conjecture

$$
K_{*}\left(C_{r}^{*}(G)\right) \cong K_{*}\left(C^{*}(V \rtimes K)\right) \stackrel{\text { if spin}}{\cong} K_{*+\operatorname{dim}(V)}\left(C^{*}(K)\right)
$$

where $K<G$ maximal compact subgroup, $V=T_{e K}(G / K)$.
A. Wassermann '87, V. Lafforgue '02 The Connes-Kasparov conjecture (i.e., BC for \mathbb{C}) holds for all reductive groups G.

Mackey-machine for Baum-Connes

Chabert, E., Oyono-Oyono, Nest 2000-2003
Mackey machine for BC:
(1) Suppose $\alpha: G \curvearrowright A$ such that A is type I and $G \curvearrowright \widehat{A}$ is reegular. Then the following (almost) holds:
$\forall \pi \in \widehat{A}: G_{\pi}$ satisfies $B C$ for $\mathcal{K}\left(H_{\pi}\right) \Rightarrow G$ satisfies $B C$ for A
(2) If $N \triangleleft G$ is amenable, then
G satisfies $B C \Leftrightarrow \dot{G}:=G / N$ satisfies $B C$ for $C^{*}(N) \otimes \mathcal{K}$.
Theorem (Chabert-E-Nest '03) The Baum-Connes conjecture (for $\left.C_{r}^{*}(G)=\mathbb{C} \rtimes_{\text {red }} G\right)$ holds for all almost connected groups and for all linear algebraic groups over \mathbb{Q}_{p}.

Bibliography

B. Bekka and S. Echterhoff On unitary representations of algebraic groups over local fields. arXiv:2003.02297 (to appear in Representation Theory)

J. Chabert, S. Echterhoff and R. Nest, The Connes-Kasparov conjecture for almost connected groups and for linear p-adic groups. Publ. Math. Inst. Hautes Études Sci. 97 (2003), 239-278.
J. Cuntz, S. Echterhoff, X. Li, and G. Yu. K-theory for group C^{*}-algebras and semigroup C^{*}-algebras, Oberwolfach Seminars, 47, Birkhäuser/Springer, Cham, 2017.
J. Dixmier, Sur les représentations unitaires des groupes de Lie algébriques, Ann. Inst. Fourier, Grenoble, 7, (1957), 315-328.
P. Green. The local structure of twisted covariance algebras. Acta. Math., 140 (1978), 191-250.
G.W. Mackey, Unitary representations of group extensions. I, Acta Math., 99 (1958), 265-311

Lajos Pukánszky. Characters of connected Lie groups. Mathematical surveys and Monographs Vol 71. American Mathematical Society, Rhode Island 1999.
Thanks for your attention!

