The Mackey-Rieffel-Green mashine

Siegfried Echterhoff

WWU Münster

AIM-RTNG Language School May 31, 2021

AIM of this lecture

Reminder: If $\alpha : G \to \operatorname{Aut}(A)$ is an action, we defined the maximal and reduced crossed products $A \rtimes_{\alpha} G$ and $A \rtimes_{\alpha, \operatorname{red}} G$ as completions of $C_c(G, A)$ with respect to certain C^* -norms.

AIM: Describe (if possible) the spaces

$$(A \rtimes_{\alpha} G)^{\widehat{}}$$
 and $Prim(A \rtimes_{\alpha} G)$ via

(1) the spaces
$$\widehat{A}$$
 resp. Prim(A).

- (2) the action $G \curvearrowright \operatorname{Prim}(A), (g, P) \mapsto g \cdot P := \alpha_g(P).$
- (3) The representation theory of $A_P \rtimes G_P$, $P \in Prim(A)$, with $G_P := \{g \in G : g \cdot P = P\}$ the stabilizer of P in G and A_P the simple subquotient of A correponding to P.

This will generalize Mackey's theory for group extensions.

Convention: In this lecture we will ignore all modular functions!

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

Group extensions

Let $G := N \rtimes H$ be a semi-direct product group. We get an action

 $\alpha: H \to \operatorname{Aut}(C^*(N)); \quad \alpha_h(\varphi)(n) := \varphi(h^{-1} \cdot n) \quad \forall \varphi \in C_c(N).$

If $V : N \rtimes H \to UM(B)$ is a unitary representation of G, let $\widetilde{V|_N} : C^*(N) \to \mathcal{B}(H)$ be the integrated form of $V|_N$. Then $(\widetilde{V|_N}, V|_H)$ is a covariant representation of $(C^*(N), H, \alpha)$.

We get an isomorphism $C^*(N \rtimes H) \cong C^*(N) \rtimes_{\alpha} H$ via

$$\Phi: C_c(N \rtimes H) \to C_c(H, C_c(N)); \quad \Phi(f)(h)(n) := f(n, h).$$

More generally: if $N \lhd G$, then there exist an action of $\dot{G} := G/N$ on $C^*(N) \otimes \mathcal{K}(H)$ such that

$$C^*(G)\otimes \mathcal{K}(H)\cong (C^*(N)\otimes \mathcal{K}(H))\rtimes_{\alpha}\dot{G}.$$

(or use Phil Green's theory of twisted crossed products instead.)

Hilbert C*-modules

Recall that a Hilbert A-module is a right Banach A-module \mathcal{X} together with an A-valued inner product

 $\langle \cdot, \cdot \rangle_{\mathcal{A}} : \mathcal{X} \times \mathcal{X} \to \mathcal{A}$

such that $\langle \xi, \xi \rangle_A > 0$ iff $\xi \neq 0$ and $\forall \xi, \eta \in \mathcal{X}, a \in A$:

 $\langle \xi, \eta \rangle_{\mathcal{A}} = \langle \eta, \xi \rangle_{\mathcal{A}}^* \quad \text{and} \quad \langle \xi, \eta \rangle_{\mathcal{A}} a = \langle \xi, \eta a \rangle_{\mathcal{A}}$

We say that \mathcal{X} is full if $\overline{\text{span}}\{\langle \xi, \eta \rangle_{\mathcal{A}} : \xi, \eta \in \mathcal{X}\} = \mathcal{A}.$

The algebra of adjointable operators

 $\mathcal{L}_{\mathcal{A}}(\mathcal{X}) := \{T : \mathcal{X} \to \mathcal{X} : \exists T^* : \mathcal{X} \to \mathcal{X} \text{ s.t } \langle T\xi, \eta \rangle_{\mathcal{A}} = \langle \xi, T^*\eta \rangle_{\mathcal{A}} \}.$

becomes a C^* -algebra w.r.t. operator norm. Recall also the ideal of compact operators

$$\mathcal{K}(\mathcal{X}) = \overline{\operatorname{span}}\{\Theta_{\xi,\eta} : \xi, \eta \in \mathcal{X}\} \quad \Theta_{\xi,\eta}(\zeta) = \xi \cdot \langle \eta, \zeta \rangle_{\mathcal{A}}.$$

Morita equivalence

Definition Two C^* -algebras A, B are called Morita equivalent, if there exists a full Hilbert B-module \mathcal{X} and an isomorphism $\Phi : A \xrightarrow{\cong} \mathcal{K}(\mathcal{X})$. We call (\mathcal{X}, Φ) an A-B-equivalence bimodule.

Notice: We obtain a left A-valued inner product on \mathcal{X} by $_{\mathcal{A}}\langle \xi, \eta \rangle := \Phi^{-1}(\Theta_{\xi,\eta})$. This satisfies the compatibility relation

 ${}_{\mathcal{A}}\langle\xi,\eta\rangle\zeta=\xi\langle\eta,\zeta\rangle_{\mathcal{B}}\quad\forall\xi,\eta,\zeta\in\mathcal{X}.$

Moreover, we get $B \cong \mathcal{K}(_A \mathcal{X})!$

There is an inverse *B*-*A*-equivalence bimodule (\mathcal{X}^*, Φ^*) with $\mathcal{X}^* = \{\xi^* : \xi \in \mathcal{X}\}$ with inner products $\langle \xi^*, \eta^* \rangle_A := {}_A \langle \xi, \eta \rangle$ and ${}_B \langle \xi^*, \eta^* \rangle := \langle \xi, \eta \rangle_B$ and actions

$$\Phi^*(b)\xi^* := (\xi b^*)^*, \quad (\xi^* a) := (\Phi(a^*)\xi)^*$$

All these operations are encoded in the Linking-algebra

$$L(\mathcal{X}) := \begin{pmatrix} A & \mathcal{X} \\ \mathcal{X}^* & B \end{pmatrix}.$$

Examples for Morita equivalences

- 1. If \mathcal{X} is any full Hilbert *B*-module, then $(\mathcal{X}, id_{\mathcal{K}})$ is a $\mathcal{K}(\mathcal{X})$ -*B* equivalence bimodule.
- Every Hilbert space H gives the K(H)-C equivalence bimodule (H, id_K).
- 3. If A is a C*-algebra, then (A, id_A) becomes an A-A equivalence bimodule w.r.t $\langle a, b \rangle_A = a^*b$.
- Combining (2) and (3) we get an A ⊗ K(H)-A equivalence bimodule A ⊗ H w.r.t.

$$\langle \mathsf{a} \otimes \xi, \mathsf{b} \otimes \eta \rangle_{\mathsf{A}} = \mathsf{a}^* \mathsf{b} \langle \xi, \eta \rangle_{\mathbb{C}}$$

5. More interesting examples will follow below!

Morita equivalences preserve: the spaces Rep(A), \widehat{A} , Prim(A), nuclearity, simplicity, type I, CCR, continuous trace, *K*-theory, etc.

Exceptions: unitality, commutativity!

The Morita category

The Morita category $\mathcal{M}\mathrm{or}\mathrm{C}^*$ is the category with

- 1. C^* -algebras as objects, and
- 2. Mor(A, B) consisting of equivalence classes of pairs (\mathcal{X}, Φ) with \mathcal{X} a Hilbert B-module and $\Phi : A \to \mathcal{L}_B(\mathcal{X})$ a *-hom..

Here

$$(\mathcal{X}_1, \Phi_1) \sim (\mathcal{X}_2, \Phi_2) \Longleftrightarrow \Phi_1(\mathcal{A})\mathcal{X}_1 \cong \Phi_2(\mathcal{A})\mathcal{X}_2.$$

Composition of $(\mathcal{X}_1, \Phi_1) \in Mor(A, B)$ with $(\mathcal{X}_2, \Phi_2) \in Mor(B, C)$ is defined via

$$(\mathcal{X}_2, \Phi_2) \circ (\mathcal{X}_1, \Phi_1) = (\mathcal{X}_1 \otimes_B \mathcal{X}_2, \Phi_1 \otimes 1) \in \mathsf{Mor}(A, C).$$

Here $\mathcal{X}_1 \otimes_B \mathcal{X}_2$ is the Hausdorff completion of $\mathcal{X}_1 \odot \mathcal{X}_2$ w.r.t

$$\langle \xi_1 \otimes \eta_1, \xi_2 \otimes \eta_2 \rangle_C = \langle \eta_1, \Phi(\langle \xi_1, \xi_2 \rangle_B) \eta_2 \rangle_C.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The Morita category

- 1. The identity morphisms id_A of A is represented by (A, id_A) , since $A \otimes_A \mathcal{X} \cong \Phi(A)\mathcal{X}$ for every $(\mathcal{X}, \Phi) \in Mor(A, B)$.
- The isomorphisms in Mor(A, B) are the A-B Morita equivalences (X, Φ) with inverse (X*, Φ*): We have

$$\begin{array}{lll} \mathcal{X}^* \otimes_A \mathcal{X} \cong B & \text{via} & \xi^* \otimes \eta \mapsto \langle \xi, \eta \rangle_B \\ \mathcal{X} \otimes_B \mathcal{X}^* \cong A & \text{via} & \xi \otimes \eta^* \mapsto {}_A \langle \xi, \eta \rangle. \end{array}$$

3. For every C^* -algebra B we have $\operatorname{Rep}(B) = \operatorname{Mor}(B, \mathbb{C})$. Thus composition with an element on $(\mathcal{X}, \Phi) \in \operatorname{Mor}(A, B)$ induces

$$\operatorname{Ind}^{\mathcal{X}} : \operatorname{Rep}(B) \to \operatorname{Rep}(A); (H, \pi) \mapsto (\mathcal{X} \otimes_B H, \Phi \otimes 1).$$

It is very easy to check that this preserves weak containment.

4. Composition with a Morita equivalence induces homeomorphisms $\widehat{A} \cong \widehat{B}$ (and similarly $Prim(A) \cong Prim(B)$.)

Mackey induction

Let $\alpha : G \rightarrow Aut(A)$ be an action, H < G a closed subgroup.

Define a $C_c(H, A)$ -valued inner product on $C_c(G, A)$ via

$$\langle \xi, \eta \rangle_{C_c(H,A)} = (\xi^* * \eta)|_H$$

and right action of $\varphi \in C_c(H, A)$ on $\xi \in \mathcal{X}_0$ by

$$\xi \cdot \varphi(\mathbf{s}) := \xi|_{\mathbf{s}H} * \varphi = \int_{H} \xi(\mathbf{s}h) \alpha_{\mathbf{s}h}(\varphi(h^{-1})) dh.$$

Then \mathcal{X}_0 completes to a Hilbert $A \rtimes_{\alpha} H$ -module \mathcal{X} and we have a left action

$$\Phi: A \rtimes_{\alpha} G \to \mathcal{L}(\mathcal{X}); \Phi(f)\xi = f * \xi \quad f, \xi \in C_{c}(G, A).$$

Composition with (\mathcal{X}, Φ) in $\mathcal{M}\mathrm{orC}^*$ gives Rieffel's version of the Mackey induction

$$\operatorname{Ind}_{H}^{G} : \operatorname{Rep}(A \rtimes H) \to \operatorname{Rep}(A \rtimes G).$$

It automatically preserves weak containment!

The imprimitivity theorem

Let $\mathcal{X} = \overline{C_c(G, A)}$ be the Hilbert $A \rtimes H$ -module of the previous slide. Then there is an action

$$M: C_0(G/H) \rightarrow \mathcal{L}(\mathcal{X}); (M(f)\xi)(s) = f(sH)\xi(s)$$

Together with the convolution action of $C_c(G, A)$ this combines to a left action

$$\Phi: (A \otimes C_0(G/H)) \rtimes_{\alpha \otimes \tau} G \xrightarrow{\cong} \mathcal{K}(\mathcal{X}).$$

This gives Phil Green's imprimitivity theorem '78:

$$(A \otimes C_0(G/H)) \rtimes_{\alpha \otimes \tau} G \sim_M A \rtimes_{\alpha} H.$$

Corollary: Mackey's imprimitivity theorem For a cov. rep. $\pi \rtimes U \in \operatorname{Rep}(A \rtimes_{\alpha} G)$ the following are equivalent 1. $\pi \rtimes U$ is induced from some $\rho \rtimes V \in \operatorname{Rep}(A \rtimes_{\alpha} H)$; 2. \exists a nondeg. rep. $P : C_0(G/H) \to \mathcal{B}(H_{\pi})$ s.t. $(\pi \otimes P) \rtimes U \in \operatorname{Rep}((A \otimes C_0(G/H)) \rtimes_{\alpha \otimes \tau} G)$.

A (slight) generalization

Let H < G and $\beta : H \rightarrow Aut(B)$ given. Define the induced algebra

$$\operatorname{Ind}_{H}^{G}B := \left\{ F: G \to B: F \text{ cont. } \left\{ \begin{array}{c} F(sh) = \beta_{h^{-1}}(F(s)) \\ (sH \mapsto \|F(s)\|) \in C_{0}(G/H) \end{array} \right\} \right\}$$

with action $(\operatorname{Ind} \beta(s)F)(t) := F(s^{-1}t).$

Special case If α : $G \rightarrow Aut(A)$, then :

 $\operatorname{Ind}_{H}^{G}(A, \alpha|_{H}) \cong C_{0}(G/H, A) \quad \text{via} \quad F \mapsto \big[sH \mapsto \alpha_{s}(F(s)) \big].$

Then $\mathcal{X}_0 = C_c(G, B)$ completes to an $\operatorname{Ind}_H^G B \rtimes_{\operatorname{Ind} \alpha} G - B \rtimes_{\alpha} H$ equivalence bimodule (\mathcal{X}, Φ) with respect to

$$\langle \xi, \eta \rangle_{C_c(H,B)}(h) = \int_G \xi(t^{-1})^* \beta_h(\eta(t^{-1}h)) \, dh$$

$$\xi \cdot \varphi(s) = \int_h \beta_h(\xi(sh)\varphi(h^{-1})) \, dh$$

$$(\Phi(f)\xi)(s) = \int_G f(t,s)\xi(t^{-1}s) \, dt$$

 $\xi,\eta\in\mathcal{X}_0,\,\varphi\in\mathcal{C}_c(H,B),\,f\in\mathcal{C}_c(G,\operatorname{\mathsf{Ind}}_H^GB).$

The generalized imprimitivity theorem

In particular, we obtain a homeomorphism

$$\operatorname{Ind}^{\mathcal{X}} : (B \rtimes_{\beta} H)^{\widehat{}} \to (\operatorname{Ind}^{\mathsf{G}}_{H} B \rtimes_{\operatorname{Ind}\beta} G)^{\widehat{}}$$

and similarly $\operatorname{Prim}(B \rtimes_{\beta} H) \cong \operatorname{Prim}(\operatorname{Ind}_{H}^{G} B \rtimes_{\operatorname{Ind} \beta} G).$

Theorem E '90 For a system
$$(A, G, \alpha)$$
 TFAE
1. $(A, G, \alpha) \cong (\operatorname{Ind}_{H}^{G} B, G, \operatorname{Ind} \beta)$ for some (B, H, β) ;
2. \exists a *G*-equivariant continuous map φ : Prim $(A) \to G/H$.
Proof (2) \Rightarrow (1): If φ exists, let $J := \cap \{P : \varphi(P) = eH\}$ and
 $B := A/J$. Then use the Dauns-Hofmann theorem to check that
 $\Phi : A \xrightarrow{\cong} \operatorname{Ind}_{H}^{G} B; \quad \Phi(a)(s) := \alpha_{s}(a) + J$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

is an isomorphism.

An application

Recall the Mautner group $\mathbb{C}^2 \rtimes \mathbb{R}$ with $x \cdot (z, w) = (e^{ix}z, e^{2\pi i x}w)$. The action $\hat{\alpha}$ on $\widehat{\mathbb{C}^2} \cong \mathbb{C}^2$ is given by $x \cdot (z, w) = (e^{-ix}z, e^{-2\pi i x}w)$. Hence

$$C^*(\mathbb{C}^2 \rtimes \mathbb{R}) \cong C^*(\mathbb{C}^2) \rtimes_{\alpha} \mathbb{R} \cong C_0(\mathbb{C}^2) \rtimes_{\hat{\alpha}} \mathbb{R}$$

There is a large invariant ideal $I := C_0((\mathbb{C} \setminus \{0\})^2)$ in $C_0(\mathbb{C}^2)$ which gives a large ideal

$$I \rtimes_{\hat{\alpha}} \mathbb{R} \subseteq C^*(\mathbb{C}^2 \rtimes \mathbb{R}).$$

Consider $\varphi : \widehat{I} := (\mathbb{C} \setminus \{0\})^2 \to \mathbb{T} \cong \mathbb{R}/\mathbb{Z}; \quad (z, w) \mapsto \frac{w}{|w|}.$ We get $I \cong \operatorname{Ind}_{\mathbb{Z}}^{\mathbb{R}} C_0(\varphi^{-1}(\{1\})) = \operatorname{Ind}_{\mathbb{Z}}^{\mathbb{R}} C_0(\mathbb{C}^* \times (0, \infty)))$ w.r.t. $\mathbb{Z} \curvearrowright \mathbb{C}^* \times (0, \infty) \cong \mathbb{T} \times (0, \infty)^2 \qquad n \cdot (z, s, t) = (e^{-in}z, s, t)$

Hence

 $I\rtimes_{\alpha}\mathbb{R}\sim_{M}C_{0}(\mathbb{T}\times(0,\infty)^{2})\rtimes_{\beta}\mathbb{Z}\cong\big(C(\mathbb{T})\rtimes_{\beta}\mathbb{Z}\big)\otimes C_{0}\big((0,\infty)^{2}\big).$

Mackey's orbit method

Recall that a locally closed subset $E \subseteq Prim(A)$ corresponds to a subquotient I/J with $J = \ker E$ (= $\cap_{P \in F} P$), $I = \ker(\overline{E} \setminus E)$. For $\alpha : G \to \operatorname{Aut}(A)$ let $G \curvearrowright \operatorname{Prim}(A)$; $(s, P) \mapsto s \cdot P := \alpha_s(P)$. We say this action is regular if the following hold (1) all orbits $G(P) = \{s \cdot P : s \in G\}$ are locally closed in Prim(A). (2) For all P, the map $G/G_P \to G(P)$; $sG_P \mapsto s \cdot P$ is a homeomorphism (with $G_P := \{s \in G : s \cdot P = P\}$).

(3) A is separable, or Prim(A)/G is almost Hausdorff.

Item (1) implies that $\forall P \in Prim(A) \exists a G-invariant subquotient$ $A_{G(P)} = I_{G(P)}/J_{G(P)}$ of A such that $G(P) \cong Prim(A_{G(P)})$. Item (2) together with the theorem on the previous slide gives $A_{G(P)} \cong_{G} \operatorname{Ind}_{G_{P}}^{G} A_{P}$ hence $A_{G(P)} \rtimes_{\alpha} G \sim_{M} A_{P} \rtimes_{\alpha_{P}} G_{P}$,

for $A_P := I_P/P$ the subquotient of A with $\{P\} = Prim(A_P)$.

Item (3) implies that every primitive ideal (resp. irreducible rep.) of $A \rtimes_{\alpha} G$ belongs to exactly one subquotient $A_{G(P)} \rtimes_{\alpha \in} G_{\ldots \in}$ Sac

The orbit method

Indeed, if $0 \rightarrow I \rightarrow A \rightarrow A/I \rightarrow 0$ is a short exact sequence of *G*-algebras, we always get a short exact sequence

$$0
ightarrow I
times_{lpha} G
ightarrow A
times_{lpha} G
ightarrow (A/I)
times_{lpha} G
ightarrow 0$$

of the full crossed products! (Not always true for $A \rtimes_{red} G$!) In particular, *G*-invariant subquotients I/J of *A* correspond to subquotients $(I/J) \rtimes_{\alpha} G = (I \rtimes_{\alpha} G)/(J \rtimes_{\alpha} G)$ of $A \rtimes_{\alpha} G$.

Thus, under the assumptions of the previous slide we get

$$\operatorname{Prim}(A \rtimes_{\alpha} G) = \bigcup_{G(P) \in \operatorname{Prim}(A)/G} \operatorname{Prim}(A_{G(P)} \rtimes_{\alpha} G)$$

and $Prim(A_{G(P)} \rtimes_{\alpha} G)$ is homeomorphic to $Prim(A_P \rtimes_{\alpha} G_P)$ via Mackey induction!

Similarly

$$(A \rtimes_{\alpha} G)^{\widehat{}} = \bigcup_{G(P) \in \operatorname{Prim}(A)/G} (A_{G(P)} \rtimes_{\alpha} G)^{\widehat{}}$$

and $(A_{G(P)} \rtimes_{\alpha} G)^{\sim} \cong (A_P \rtimes_{\alpha} G_P)^{\sim}$ via Mackey induction!

Mackey's little group method

Question: How do A_P and $A_P \rtimes_{\alpha} G_P$ look like? Special case 1: If $A = C_0(X)$, then $X \cong \widehat{A} \ (\cong \operatorname{Prim}(A))$ via $x \mapsto \epsilon_x$ (eval. at x). Then $A_x = C(\{x\}) \cong \mathbb{C}$, and $A_x \rtimes G_x \cong C^*(G_x)$. We get $(C_0(X) \rtimes_{\alpha} G)^{\widehat{}} = \bigcup_{G(x) \in X/G} \{\operatorname{Ind}_{G_x}^G(\epsilon_x \rtimes \rho) : \rho \in \widehat{G_x}\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(and similarly for $Prim(C_0(X) \rtimes_{\alpha} G)$).

An Example

Let
$$G = \mathbb{R}^2 \rtimes SL_2(\mathbb{R})$$
. Write $H := SL_2(\mathbb{R})$. Then
 $C^*(G) \cong C^*(\mathbb{R}^2) \rtimes SL_2(\mathbb{R}) \cong C_0(\mathbb{R}^2) \rtimes_{\alpha} SL_2(\mathbb{R})$
with $SL_2(\mathbb{R}) \curvearrowright \mathbb{R}^2$; $(A, x) \mapsto A^t x$.
Then $\mathbb{R}^2/H = \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \} \dot{\cup} \{ \mathbb{R}^2 \setminus \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \} \}$ with stabilizers

$$H_{\left(\begin{smallmatrix}0\\0\end{smallmatrix}
ight)}={
m SL}_2(\mathbb{R}) \quad {
m and} \quad H_{\left(\begin{smallmatrix}1\\0\end{smallmatrix}
ight)}=\{\left(\begin{smallmatrix}1&0\\a&1\end{smallmatrix}
ight):a\in\mathbb{R}\}\cong\mathbb{R}.$$

Thus

$$\widehat{\mathcal{G}} = \widehat{\mathrm{SL}_2(\mathbb{R})} \dot{\cup} \left\{ \mathrm{Ind}_{\mathbb{R}^2 \rtimes \mathbb{R}}^{\mathcal{G}} \chi_{\left(\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right)} \rtimes \mu : \mu \in \widehat{\mathbb{R}} \right\},$$

where $\chi_{\begin{pmatrix}1\\0\end{pmatrix}}\begin{pmatrix}x\\y\end{pmatrix} = e^{2\pi i x}$ is the character of \mathbb{R}^2 corresponding to the vector $\begin{pmatrix}1\\0\end{pmatrix} \in \mathbb{R}^2 \cong \widehat{\mathbb{R}^2}$.

Mackey's little group method Special case 2: Let $\alpha : G \to \operatorname{Aut}(A)$ with A type I. Then $\widehat{A} \cong \operatorname{Prim}(A)$ via $\pi \mapsto \ker \pi$ and $A_{\pi} = \mathcal{K}(H_{\pi})$, Note: $\operatorname{Aut}(\mathcal{K}(H_{\pi})) = P\mathcal{U}(H_{\pi}) = \mathcal{U}(H_{\pi})/\mathbb{T}$. Let $\alpha_{\pi} : G_{\pi} \to P\mathcal{U}(H_{\pi}) = \operatorname{Aut}(\mathcal{K}(H_{\pi}))$ be the action of G_{π} and let $c : P\mathcal{U} \to \mathcal{U}$ be a Borel section. Then $W := c \circ \alpha_{\pi} : G_{\pi} \to \mathcal{U}(H_{\pi})$ satisfies $\operatorname{Ad}(W_{s}W_{t}) = \alpha_{\pi}(s)\alpha_{\pi}(t) = \alpha_{\pi}(st) = \operatorname{Ad} W_{st}$.

Thus there exist a Borel map $\omega_\pi: \mathcal{G}_\pi imes \mathcal{G}_\pi o \mathbb{T}$ such that

$$W_s W_t = \omega_\pi(s,t) W_{st}.$$

On elements $s, t, r \in G_{\pi}$ one easily checks that $\omega_{\pi} \in Z^{2}(G_{\pi}, \mathbb{T})$. Theorem (Mackey)

 $\mathcal{K}(H_{\pi}) \otimes \mathcal{C}^{*}(G_{\pi}, \omega_{\pi}^{-1}) \cong \mathcal{K}(H_{\pi}) \rtimes_{\alpha} G_{\pi} \quad \text{via} \quad k \otimes f \mapsto \left[s \mapsto f(s) k W_{s}^{*} \right]$ and $(\mathcal{K}(H_{\pi}) \rtimes_{\alpha} G_{\pi})^{\widehat{}} = \{ (\pi \otimes 1) \rtimes (W \otimes V) : V \in (G_{\pi}, \omega_{\pi}^{-1})^{\widehat{}} \}.$ Mackey's little group method: An application

Theorem (Mackey-Takesaki-Green) Suppose that A is type I and $\alpha : G \to \operatorname{Aut}(A)$ satisfies the regularity conditions (1)–(3). Then $A \rtimes_{\alpha} G$ is type I if and only if $C^*(G_{\pi}, \omega_{\pi}^{-1})$ is type I for all $\pi \in \widehat{A}$. Proof $A \rtimes_{\alpha} G$ is type I if and only if

$$\forall \rho \in (A \rtimes_{\alpha} G)^{\widehat{}} : \quad \rho(A \rtimes_{\alpha} G) \supseteq \mathcal{K}(H_{\rho}).$$

Since every ρ belongs to $(A_{G(\pi)} \rtimes_{\alpha} G)^{\widehat{}}$ for one orbit $G(\pi) \subseteq \widehat{A}$, it suffices to show that $A_{G(\pi)} \rtimes_{\alpha} G$ is type I for all $\pi \in \widehat{A}$. But

$$A_{G(\pi)} \rtimes_{\alpha} G \sim_{M} A_{\pi} \rtimes_{\alpha} G_{\pi} \sim_{M} C^{*}(G_{\pi}, \omega_{\pi}^{-1})$$

and the type I property is preserved by Morita equivalence. Note: the theorem always applies when G is compact!

Mackey's little group method: An application

Theorem (Dixmier-Pukanszky) Let G be a real (locally) algebraic group. Then $C^*(G)$ is type I

Rough idea of Proof: Show by induction on dim(G) that $C^*(G)$ type I. Easy if dim(G) = 1. If dim(G) > 1 there are two cases: Case 1: G is reductive. Then the result is due to Harish Chandra.

Case 2: Let N denote the nilradical of G. Then $G \cong N \rtimes R$ with N unipotent and R reductive. Thus we may decompose

$$C^*(G)\cong C^*(N)\rtimes_{\alpha} R.$$

By Kirillov, we know that

$$\widehat{N} \cong \mathfrak{n}^* / \operatorname{Ad}^*(N)$$
 hence $\widehat{N} / R = \widehat{N} / G \cong \mathfrak{n}^* / \operatorname{Ad}^*(G).$

Since the G-action is algebraic, the orbits are locally closed and the Mackey machine applies. Hence

$$\mathcal{C}^*(\mathcal{G})$$
 type I $\iff orall \pi \in \widehat{\mathcal{N}}: \ \mathcal{C}^*(\mathcal{R}_\pi, \omega_\pi^{-1})$ type I

But dim $(R_{\pi}) < \dim(G)$ (need some extra care for $\omega_{\pi}^{-1}!$), $\Box = \sum_{\sigma \in \mathcal{O}} (\sigma \circ \sigma \circ \sigma)$

The Baum-Connes conjecture

The Baum-Connes conjecture predicted that a certain map

 $\mu: \mathsf{K}^{\mathsf{top}}_*(\mathsf{G},\mathsf{A}) \to \mathsf{K}_*(\mathsf{A} \rtimes_{\mathsf{red}} \mathsf{G})$

is an isomorphism (not always true, but very often).

For (almost) connected G, this implies the

Connes-Kasparov conjecture

$$K_*(C^*_r(G)) \cong K_*(C^*(V \rtimes K)) \stackrel{\text{if spin}^c}{\cong} K_{*+\dim(V)}(C^*(K))$$

where K < G maximal compact subgroup, $V = T_{eK}(G/K)$.

A. Wassermann '87, V. Lafforgue '02 The Connes-Kasparov conjecture (i.e., BC for \mathbb{C}) holds for all reductive groups G.

Mackey-machine for Baum-Connes

Chabert, E., Oyono-Oyono, Nest 2000–2003 Mackey machine for BC:

(1) Suppose $\alpha : G \frown A$ such that A is type I and $G \frown \widehat{A}$ is regular. Then the following (almost) holds:

$$\forall \pi \in \widehat{A}: \ G_{\pi} \text{ satisfies BC for } \mathcal{K}(H_{\pi}) \Rightarrow G \text{ satisfies BC for } A$$

(2) If $N \lhd G$ is amenable, then

G satisfies $BC \Leftrightarrow \dot{G} := G/N$ satisfies BC for $C^*(N) \otimes \mathcal{K}$.

Theorem (Chabert-E-Nest '03) The Baum-Connes conjecture (for $C_r^*(G) = \mathbb{C} \rtimes_{\text{red}} G$) holds for all almost connected groups and for all linear algebraic groups over \mathbb{Q}_p .

Bibliography

- B. Bekka and S. Echterhoff On unitary representations of algebraic groups over local fields. arXiv:2003.02297 (to appear in Representation Theory)

J. Chabert, S. Echterhoff and R. Nest, *The Connes-Kasparov conjecture for almost connected groups and for linear p-adic groups.* Publ. Math. Inst. Hautes Études Sci. **97** (2003), 239–278.

J. Cuntz, S. Echterhoff, X. Li, and G. Yu. K-theory for group C^* -algebras and semigroup C^* -algebras, Oberwolfach Seminars, 47, Birkhäuser/Springer, Cham, 2017.

J. Dixmier, *Sur les représentations unitaires des groupes de Lie algébriques*, Ann. Inst. Fourier, Grenoble, **7**, (1957), 315–328.

P. Green. *The local structure of twisted covariance algebras*. Acta. Math., **140** (1978), 191–250.

Lajos Pukánszky. Characters of connected Lie groups. Mathematical surveys and Monographs Vol 71. American Mathematical Society, Rhode Island 1999.

Thanks for your attention!