
The Mackey-Rieffel-Green mashine

Siegfried Echterhoff

WWU Münster

AIM-RTNG Language School
May 31, 2021



AIM of this lecture

Reminder: If α : G → Aut(A) is an action, we defined the maximal
and reduced crossed products Aoα G and Aoα,red G as
completions of Cc(G ,A) with respect to certain C ∗-norms.

AIM: Describe (if possible) the spaces

(Aoα G )̂ and Prim(Aoα G ) via

(1) the spaces Â resp. Prim(A).

(2) the action G y Prim(A), (g ,P) 7→ g · P := αg (P).

(3) The representation theory of AP o GP , P ∈ Prim(A), with
GP := {g ∈ G : g ·P = P} the stabilizerof P in G and AP the
simple subquotient of A correponding to P.

This will generalize Mackey’s theory for group extensions.

Convention: In this lecture we will ignore all modular functions!



Group extensions

Let G := N o H be a semi-direct product group. We get an action

α : H → Aut(C ∗(N)); αh(ϕ)(n) := ϕ(h−1 · n) ∀ϕ ∈ Cc(N).

If V : N o H → UM(B) is a unitary representation of G , let

Ṽ |N : C ∗(N)→ B(H) be the integrated form of V |N . Then

(Ṽ |N ,V |H) is a covariant representation of (C ∗(N),H, α).

We get an isomorphism C ∗(N o H) ∼= C ∗(N) oα H via

Φ : Cc(N o H)→ Cc(H,Cc(N)); Φ(f )(h)(n) := f (n, h).

More generally: if N C G , then there exist an action of Ġ := G/N
on C ∗(N)⊗K(H) such that

C ∗(G )⊗K(H) ∼= (C ∗(N)⊗K(H)) oα Ġ .

(or use Phil Green’s theory of twisted crossed products instead.)



Hilbert C ∗-modules
Recall that a Hilbert A-module is a right Banach A-module X
together with an A-valued inner product

〈·, ·〉A : X × X → A

such that 〈ξ, ξ〉A > 0 iff ξ 6= 0 and ∀ξ, η ∈ X , a ∈ A:

〈ξ, η〉A = 〈η, ξ〉∗A and 〈ξ, η〉Aa = 〈ξ, ηa〉A

We say that X is full if span{〈ξ, η〉A : ξ, η ∈ X} = A.

The algebra of adjointable operators

LA(X ) := {T : X → X : ∃ T ∗ : X → X s.t 〈T ξ, η〉A = 〈ξ,T ∗η〉A}.

becomes a C ∗-algebra w.r.t. operator norm. Recall also the ideal
of compact operators

K(X ) = span{Θξ,η : ξ, η ∈ X} Θξ,η(ζ) = ξ · 〈η, ζ〉A.



Morita equivalence

Definition Two C ∗-algebras A,B are called Morita equivalent, if
there exists a full Hilbert B-module X and an isomorphism

Φ : A
∼=→ K(X ). We call (X ,Φ) an A-B-equivalence bimodule.

Notice: We obtain a left A-valued inner product on X by

A〈ξ, η〉 := Φ−1(Θξ,η). This satisfies the compatibility relation

A〈ξ, η〉ζ = ξ〈η, ζ〉B ∀ξ, η, ζ ∈ X .

Moreover, we get B ∼= K(AX )!

There is an inverse B-A-equivalence bimodule (X ∗,Φ∗) with
X ∗ = {ξ∗ : ξ ∈ X} with inner products 〈ξ∗, η∗〉A := A〈ξ, η〉 and

B〈ξ∗, η∗〉 := 〈ξ, η〉B and actions

Φ∗(b)ξ∗ := (ξb∗)∗, (ξ∗a) := (Φ(a∗)ξ)∗

All these operations are encoded in the Linking-algebra

L(X ) :=

(
A X
X ∗ B

)
.



Examples for Morita equivalences

1. If X is any full Hilbert B-module, then (X , idK) is a K(X )-B
equivalence bimodule.

2. Every Hilbert space H gives the K(H)-C equivalence bimodule
(H, idK).

3. If A is a C ∗-algebra, then (A, idA) becomes an A-A
equivalence bimodule w.r.t 〈a, b〉A = a∗b.

4. Combining (2) and (3) we get an A⊗K(H)-A equivalence
bimodule A⊗ H w.r.t.

〈a⊗ ξ, b ⊗ η〉A = a∗b〈ξ, η〉C

5. More interesting examples will follow below!

Morita equivalences preserve: the spaces Rep(A), Â,Prim(A),
nuclearity, simplicity, type I, CCR, continuous trace, K -theory, etc.

Exceptions: unitality, commutativity!



The Morita category

The Morita category MorC∗ is the category with

1. C ∗-algebras as objects, and

2. Mor(A,B) consisting of equivalence classes of pairs (X ,Φ)
with X a Hilbert B-module and Φ : A→ LB(X ) a ∗-hom..

Here
(X1,Φ1) ∼ (X2,Φ2)⇐⇒ Φ1(A)X1

∼= Φ2(A)X2.

Composition of (X1,Φ1) ∈ Mor(A,B) with (X2,Φ2) ∈ Mor(B,C )
is defined via

(X2,Φ2) ◦ (X1,Φ1) = (X1 ⊗B X2,Φ1 ⊗ 1) ∈ Mor(A,C ).

Here X1 ⊗B X2 is the Hausdorff completion of X1 �X2 w.r.t

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉C = 〈η1,Φ(〈ξ1, ξ2〉B)η2〉C .



The Morita category

1. The identity morphisms idA of A is represented by (A, idA),
since A⊗A X ∼= Φ(A)X for every (X ,Φ) ∈ Mor(A,B).

2. The isomorphisms in Mor(A,B) are the A-B Morita
equivalences (X ,Φ) with inverse (X ∗,Φ∗): We have

X ∗ ⊗A X ∼= B via ξ∗ ⊗ η 7→ 〈ξ, η〉B
X ⊗B X ∗ ∼= A via ξ ⊗ η∗ 7→ A〈ξ, η〉.

3. For every C ∗-algebra B we have Rep(B) = Mor(B,C). Thus
composition with an element on (X ,Φ) ∈ Mor(A,B) induces

IndX : Rep(B)→ Rep(A); (H, π) 7→ (X ⊗B H,Φ⊗ 1).

It is very easy to check that this preserves weak containment.

4. Composition with a Morita equivalence induces
homeomorphisms Â ∼= B̂ (and similarly Prim(A) ∼= Prim(B).)



Mackey induction
Let α : G → Aut(A) be an action, H < G a closed subgroup.

Define a Cc(H,A)-valued inner product on Cc(G ,A) via

〈ξ, η〉Cc (H,A) = (ξ∗ ∗ η)|H

and right action of ϕ ∈ Cc(H,A) on ξ ∈ X0 by

ξ · ϕ(s) := ξ|sH ∗ ϕ =

∫
H
ξ(sh)αsh(ϕ(h−1)) dh.

Then X0 completes to a Hilbert Aoα H-module X and we have a
left action

Φ : Aoα G → L(X ); Φ(f )ξ = f ∗ ξ f , ξ ∈ Cc(G ,A).

Composition with (X ,Φ) in MorC∗ gives Rieffel’s version of the
Mackey induction

IndG
H : Rep(Ao H)→ Rep(Ao G ).

It automatically preserves weak containment!



The imprimitivity theorem
Let X = Cc(G ,A) be the Hilbert Ao H-module of the previous
slide. Then there is an action

M : C0(G/H)→ L(X ); (M(f )ξ)(s) = f (sH)ξ(s)

Together with the convolution action of Cc(G ,A) this combines to
a left action

Φ : (A⊗ C0(G/H)) oα⊗τ G
∼=→ K(X ).

This gives Phil Green’s imprimitivity theorem ’78:

(A⊗ C0(G/H)) oα⊗τ G ∼M Aoα H.

Corollary: Mackey’s imprimitivity theorem
For a cov. rep. π oU ∈ Rep(Aoα G ) the following are equivalent

1. π o U is induced from some ρo V ∈ Rep(Aoα H);

2. ∃ a nondeg. rep. P : C0(G/H)→ B(Hπ) s.t.

(π ⊗ P) o U ∈ Rep((A⊗ C0(G/H)) oα⊗τ G ).



A (slight) generalization
Let H < G and β : H → Aut(B) given. Define the induced algebra

IndG
H B :=

{
F : G → B : F cont.

{
F (sh) = βh−1(F (s))

(sH 7→ ‖F (s)‖) ∈ C0(G/H)

}}
with action

(
Indβ(s)F

)
(t) := F (s−1t).

Special case If α : G → Aut(A), then :

IndG
H(A, α|H) ∼= C0(G/H,A) via F 7→

[
sH 7→ αs(F (s))

]
.

Then X0 = Cc(G ,B) completes to an IndG
H B oIndα G − B oα H

equivalence bimodule (X ,Φ) with respect to

〈ξ, η〉Cc (H,B)(h) =

∫
G
ξ(t−1)∗βh(η(t−1h)) dh

ξ · ϕ(s) =

∫
h
βh(ξ(sh)ϕ(h−1)) dh(

Φ(f )ξ
)
(s) =

∫
G
f (t, s)ξ(t−1s) dt

ξ, η ∈ X0, ϕ ∈ Cc(H,B), f ∈ Cc(G , IndG
H B).



The generalized imprimitivity theorem

In particular, we obtain a homeomorphism

IndX : (B oβ H )̂ → (IndG
H B oIndβ G )̂

and similarly Prim(B oβ H) ∼= Prim(IndG
H B oIndβ G ).

Theorem E ’90 For a system (A,G , α) TFAE

1. (A,G , α) ∼= (IndG
H B,G , Indβ) for some (B,H, β);

2. ∃ a G -equivariant continuous map ϕ : Prim(A)→ G/H.

Proof (2)⇒(1): If ϕ exists, let J := ∩{P : ϕ(P) = eH} and
B := A/J. Then use the Dauns-Hofmann theorem to check that

Φ : A
∼=→ IndG

H B; Φ(a)(s) := αs(a) + J

is an isomorphism.



An application

Recall the Mautner group C2 oR with x · (z ,w) = (e ixz , e2πixw).

The action α̂ on Ĉ2 ∼= C2 is given by x · (z ,w) = (e−ixz , e−2πixw).
Hence

C ∗(C2 oR) ∼= C ∗(C2) oα R ∼= C0(C2) oα̂ R

There is a large invariant ideal I := C0((C \ {0})2) in C0(C2)
which gives a large ideal

I oα̂ R ⊆ C ∗(C2 oR).

Consider ϕ : Î := (C \ {0})2 → T ∼= R/Z; (z ,w) 7→ w
|w | .

We get I ∼= IndR
Z C0(ϕ−1({1})) = IndR

Z C0(C∗ × (0,∞))) w.r.t.

Z y C∗ × (0,∞) ∼= T× (0,∞)2 n · (z , s, t) = (e−inz , s, t)

Hence
I oα R ∼M C0(T× (0,∞)2) oβ Z ∼=

(
C (T) oβ Z

)
⊗ C0

(
(0,∞)2

)
.



Mackey’s orbit method
Recall that a locally closed subset E ⊆ Prim(A) corresponds to a
subquotient I/J with J = ker E (= ∩P∈EP), I = ker(Ē \ E ).

For α : G → Aut(A) let G y Prim(A); (s,P) 7→ s · P := αs(P).

We say this action is regular if the following hold

(1) all orbits G (P) = {s ·P : s ∈ G} are locally closed in Prim(A).
(2) For all P, the map G/GP → G (P); sGP 7→ s · P

is a homeomorphism (with GP := {s ∈ G : s · P = P}).
(3) A is separable, or Prim(A)/G is almost Hausdorff.

Item (1) implies that ∀ P ∈ Prim(A) ∃ a G -invariant subquotient
AG(P) = IG(P)/JG(P) of A such that G (P) ∼= Prim(AG(P)).

Item (2) together with the theorem on the previous slide gives

AG(P)
∼=G IndG

GP
AP hence AG(P) oα G ∼M AP oαP

GP ,

for AP := IP/P the subquotient of A with {P} = Prim(AP).

Item (3) implies that every primitive ideal (resp. irreducible rep.)
of Aoα G belongs to exactly one subquotient AG(P) oα G .



The orbit method
Indeed, if 0→ I → A→ A/I → 0 is a short exact sequence of
G -algebras, we always get a short exact sequence

0→ I oα G → Aoα G → (A/I ) oα G → 0

of the full crossed products! (Not always true for Aored G !)

In particular, G -invariant subquotients I/J of A correspond to
subquotients (I/J) oα G = (I oα G )/(J oα G ) of Aoα G .

Thus, under the assumptions of the previous slide we get

Prim(Aoα G ) =
⋃̇

G(P)∈Prim(A)/G
Prim(AG(P) oα G )

and Prim(AG(P) oα G ) is homeomorphic to Prim(AP oα GP) via
Mackey induction!

Similarly

(Aoα G )̂ =
⋃̇

G(P)∈Prim(A)/G
(AG(P) oα G )̂

and (AG(P) oα G )̂ ∼= (AP oα GP )̂ via Mackey induction!



Mackey’s little group method

Question: How do AP and AP oα GP look like?

Special case 1:
If A = C0(X ), then X ∼= Â (∼= Prim(A)) via x 7→ εx (eval. at x).

Then Ax = C ({x}) ∼= C, and Ax o Gx
∼= C ∗(Gx). We get

(C0(X ) oα G )̂ =
⋃̇

G(x)∈X/G
{IndG

Gx
(εx o ρ) : ρ ∈ Ĝx}.

(and similarly for Prim(C0(X ) oα G )).



An Example

Let G = R2 o SL2(R). Write H := SL2(R). Then

C ∗(G ) ∼= C ∗(R2) o SL2(R) ∼= C0(R2) oα SL2(R)

with SL2(R) y R2; (A, x) 7→ Atx .

Then R2/H = {( 0
0 )}∪̇{R2 \ {( 0

0 )}} with stabilizers

H( 0
0 ) = SL2(R) and H( 1

0 ) = {( 1 0
a 1 ) : a ∈ R} ∼= R.

Thus

Ĝ = ŜL2(R)∪̇
{

IndG
R2oR χ( 1

0 ) o µ : µ ∈ R̂
}
,

where χ( 1
0 ) ( x

y ) = e2πix is the character of R2 corresponding to

the vector ( 1
0 ) ∈ R2 ∼= R̂2.



Mackey’s little group method
Special case 2: Let α : G → Aut(A) with A type I. Then

Â ∼= Prim(A) via π 7→ ker π and Aπ = K(Hπ),

Note: Aut(K(Hπ)) = PU(Hπ) = U(Hπ)/T.

Let απ : Gπ → PU(Hπ) = Aut(K(Hπ)) be the action of Gπ and let
c : PU → U be a Borel section. Then W := c ◦ απ : Gπ → U(Hπ)
satisfies Ad(WsWt) = απ(s)απ(t) = απ(st) = AdWst .

Thus there exist a Borel map ωπ : Gπ × Gπ → T such that

WsWt = ωπ(s, t)Wst .

On elements s, t, r ∈ Gπ one easily checks that ωπ ∈ Z 2(Gπ,T).

Theorem (Mackey)

K(Hπ)⊗C ∗(Gπ, ω−1
π ) ∼= K(Hπ)oαGπ via k⊗f 7→

[
s 7→ f (s)kW ∗

s

]
and (K(Hπ) oα Gπ )̂ = {(π ⊗ 1) o (W ⊗ V ) : V ∈ (Gπ, ω

−1
π )̂ }.



Mackey’s little group method: An application

Theorem (Mackey-Takesaki-Green) Suppose that A is type I and
α : G → Aut(A) satisfies the regularity conditions (1)–(3). Then
Aoα G is type I if and only if C ∗(Gπ, ω

−1
π ) is type I for all π ∈ Â.

Proof Aoα G is type I if and only if

∀ρ ∈ (Aoα G )̂ : ρ(Aoα G ) ⊇ K(Hρ).

Since every ρ belongs to (AG(π) oα G )̂ for one orbit G (π) ⊆ Â, it

suffices to show that AG(π) oα G is type I for all π ∈ Â. But

AG(π) oα G ∼M Aπ oα Gπ ∼M C ∗(Gπ, ω
−1
π )

and the type I property is preserved by Morita equivalence.

Note: the theorem always applies when G is compact!



Mackey’s little group method: An application
Theorem (Dixmier-Pukanszky) Let G be a real (locally) algebraic
group. Then C ∗(G ) is type I

Rough idea of Proof: Show by induction on dim(G ) that C ∗(G )
type I. Easy if dim(G ) = 1. If dim(G ) > 1 there are two cases:
Case 1: G is reductive. Then the result is due to Harish Chandra.

Case 2: Let N denote the nilradical of G . Then G ∼= N o R with
N unipotent and R reductive. Thus we may decompose

C ∗(G ) ∼= C ∗(N) oα R.

By Kirillov, we know that

N̂ ∼= n∗/Ad∗(N) hence N̂/R = N̂/G ∼= n∗/Ad∗(G ).

Since the G -action is algebraic, the orbits are locally closed and
the Mackey machine applies. Hence

C ∗(G ) type I ⇐⇒ ∀π ∈ N̂ : C ∗(Rπ, ω
−1
π ) type I

But dim(Rπ) < dim(G ) (need some extra care for ω−1
π !)



The Baum-Connes conjecture

The Baum-Connes conjecture predicted that a certain map

µ : K top
∗ (G ,A)→ K∗(Aored G )

is an isomorphism (not always true, but very often).

For (almost) connected G , this implies the

Connes-Kasparov conjecture

K∗(C
∗
r (G )) ∼= K∗(C

∗(V o K ))
if spinc

∼= K∗+dim(V )(C ∗(K ))

where K < G maximal compact subgroup, V = TeK (G/K ).

A. Wassermann ’87, V. Lafforgue ’02 The Connes-Kasparov
conjecture (i.e., BC for C) holds for all reductive groups G .



Mackey-machine for Baum-Connes

Chabert, E., Oyono-Oyono, Nest 2000–2003
Mackey machine for BC:

(1) Suppose α : G y A such that A is type I and G y Â is
reegular. Then the following (almost) holds:

∀π ∈ Â : Gπ satisfies BC for K(Hπ) ⇒ G satisfies BC for A

(2) If N C G is amenable, then

G satisfies BC ⇔ Ġ := G/N satisfies BC for C ∗(N)⊗K.

Theorem (Chabert-E-Nest ’03) The Baum-Connes conjecture (for
C ∗r (G ) = Cored G ) holds for all almost connected groups and for
all linear algebraic groups over Qp.
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Thanks for your attention!


