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AIM of this lecture

Reminder: If a: G — Aut(A) is an action, we defined the maximal
and reduced crossed products A X, G and A X req G as
completions of C.(G, A) with respect to certain C*-norms.

AIM: Describe (if possible) the spaces

(Axy G)” and Prim(A x, G) via

(1) the spaces A resp. Prim(A).
(2) the action G ~ Prim(A), (g, P) — g - P := ag(P).
(3) The representation theory of Ap x Gp, P € Prim(A), with

Gp :={g € G : g- P = P} the stabilizerof P in G and Ap the
simple subquotient of A correponding to P.

This will generalize Mackey's theory for group extensions.

Convention: In this lecture we will ignore all modular functions!



Group extensions

Let G := N x H be a semi-direct product group. We get an action
a:H = Aut(C*(N));  an(e)(n) :=@(h - n) Ve e C(N).

If V:Nx H— UM(B) is a unitary representation of G, let
V|n: C*(N) — B(H) be the integrated form of V|y. Then
(V|n, V|y) is a covariant representation of (C*(N), H, ).

We get an isomorphism C*(N x H) = C*(N) x4 H via
& : C(N x H) = C(H, C(N));  ®(f)(h)(n) := f(n, h).

More generally: if N <1 G, then there exist an action of G = G/N
on C*(N) ® K(H) such that

C*(G) ® K(H) = (C*(N) @ K(H)) x4 G.

(or use Phil Green's theory of twisted crossed products instead.)



Hilbert C*-modules

Recall that a Hilbert A-module is a right Banach A-module X
together with an A-valued inner product

<-,'>AZX><X—>A
such that (£,§)a > 0iff ¢ £0 and V&, n € X,a € A:

<€7 77>A = <777§>,t\ and <§7 7]>Aa = <§7773>A
We say that X is full if span{({,n)a : &, n € X} = A.

The algebra of adjointable operators
La(X) =T X=X : 3T X > Xst(T&,ma=(, T)a}.

becomes a C*-algebra w.r.t. operator norm. Recall also the ideal
of compact operators

IC(X) = W{@E,n tE,ne X} @E,U(C) =¢- <777 C)A



Morita equivalence

Definition Two C*-algebras A, B are called Morita equivalent, if
there exists a full Hilbert B-module X and an isomorphism

®:AS K(X). We call (X, ®) an A-B-equivalence bimodule.

Notice: We obtain a left A-valued inner product on X by
A(€,m) == ®71(O¢ ). This satisfies the compatibility relation

A<§7 77>C = §<777 C>B vgv T]?C eX.
Moreover, we get B = (4 X)!
There is an inverse B-A-equivalence bimodule (X*, ®*) with
X* = {¢" : £ € X} with inner products (€*,7*)a := a(&,n) and
g(&*,n*) := (&, ) and actions
O*(b)S™ = (£b7)7,  (£7a) := (P(a")€)"

All these operations are encoded in the Linking-algebra

L(X) = (;‘ g)



Examples for Morita equivalences

1. If X is any full Hilbert B-module, then (X, idx) is a K(X)-B
equivalence bimodule.

2. Every Hilbert space H gives the K(H)-C equivalence bimodule
(H,idx).

3. If Alis a C*-algebra, then (A,ida) becomes an A-A
equivalence bimodule w.r.t (a,b)4 = a*b.

4. Combining (2) and (3) we get an A® K(H)-A equivalence
bimodule A® H w.r.t.

<a & 5’ b® 77>A = a*b<£7n>(c

5. More interesting examples will follow below!

Morita equivalences preserve: the spaces Rep(A), Z, Prim(A),
nuclearity, simplicity, type I, CCR, continuous trace, K-theory, etc.

Exceptions: unitality, commutativity!



The Morita category

The Morita category MorC* is the category with
1. C*-algebras as objects, and

2. Mor(A, B) consisting of equivalence classes of pairs (X, )
with X a Hilbert B-module and ¢ : A — Lg(X) a *-hom..

Here
(Xl, (Dl) ~ (XQ, (D2) < (Dl(A)Xl = ¢2(A)X2.

Composition of (X1, ®1) € Mor(A, B) with (X2, ®2) € Mor(B, C)
is defined via

(XQ, (DQ) (¢} (Xl, Cbl) = (Xl Xp XQ, P11 ® 1) € |\/|0r(A, C)
Here X; ®pg X> is the Hausdorff completion of X7 ©® A w.r.t

(E1@m1,6 @m)c = (n1, ®((&1,82)8)m2) C-



The Morita category

1. The identity morphisms id4 of A is represented by (A,ida),
since A@p X = ®(A)X for every (X, d) € Mor(A, B).

2. The isomorphisms in Mor(A, B) are the A-B Morita
equivalences (X, ®) with inverse (X*, ®*): We have

X*'RaX =B via &n— ()8
XX " =2A via £@n'— al&n).

3. For every C*-algebra B we have Rep(B) = Mor(B,C). Thus
composition with an element on (X, ®) € Mor(A, B) induces

Ind™ : Rep(B) — Rep(A); (H,7) — (X ®p H,® ®1).

It is very easy to check that this preserves weak containment.

4. Composition with a Morita equivalence induces
homeomorphisms A = B (and similarly Prim(A) = Prim(B).)



Mackey induction
Let & : G — Aut(A) be an action, H < G a closed subgroup.

Define a C.(H, A)-valued inner product on C.(G, A) via

& cm.a = (E *n)lu
and right action of ¢ € C.(H, A) on £ € X by

& p(s) = Elan ¥ = /H E(sh)asn(io(h™1)) dh.

Then Xy completes to a Hilbert A x, H-module X and we have a
left action

O:Ax, G — LX) O(F)E=Fx& f,¢€ C(G,A).

Composition with (X, ®) in MorC* gives Rieffel's version of the
Mackey induction

Ind§; : Rep(A x H) — Rep(A x G).

It automatically preserves weak containment!



The imprimitivity theorem

Let X = C.(G, A) be the Hilbert A x H-module of the previous
slide. Then there is an action

M CGo(G/H) — L(X); (M(F)¢)(s) = f(sH)S(s)

Together with the convolution action of C.(G, A) this combines to
a left action

¢ (A® Go(G/H)) Xawr G = K(X).
This gives Phil Green's imprimitivity theorem '78:
(A® Co(G/H)) Xa®T G ~pm A xg H.

Corollary: Mackey's imprimitivity theorem
For a cov. rep. m x U € Rep(A X, G) the following are equivalent

1. m x U is induced from some p x V € Rep(A x4 H);
2. 3 anondeg. rep. P: Co(G/H) — B(Hx) s.t.

(r® P) x U € Rep((A® Co(G/H)) Xagr G).



A (slight) generalization
Let H < G and 8 : H — Aut(B) given. Define the induced algebra

o F(sh) = By (F(5)
Indf, B = {F. G — B : F cont. {(sH '—>$HF(5)H3 c CO?G/H)}}

with action  (Ind B(s)F)(t) := F(s't).
Special case If & : G — Aut(A), then :
Indf(A, a|n) =2 Co(G/H,A) via F— [sH— as(F(s))].

Then Xy = C(G, B) completes to an Indf, B Xinda G — B xg H
equivalence bimodule (X', ®) with respect to

) e () = /G E(1) Bu(n(t h)) dh
£ ols) = /h Bu(E(sh)e(h 1)) db
(S(F)E)(s) = /G F(t,)¢(¢Ls) dt

&,ne Xy, g€ C(H,B), feC(G,IndG B).



The generalized imprimitivity theorem

In particular, we obtain a homeomorphism
Ind™ : (B x5 HY™ — (Ind§; B Xng5 G)™
and similarly  Prim(B x5 H) = Prim(Ind§; B X145 G).

Theorem E '90 For a system (A, G,«) TFAE
1. (A, G,a) = (Indg B, G,Ind 3) for some (B, H, 3);
2. 3 a G-equivariant continuous map ¢ : Prim(A) — G/H.

Proof (2)=(1): If p exists, let J:=N{P : ¢(P) = eH} and
B := A/J. Then use the Dauns-Hofmann theorem to check that

d:AS IndS B;  ®(a)(s) := as(a) + J

is an isomorphism.



An application

Recall the Mautner group C2? x R with x - (z, w) = (e¥z, e*™>w).
The action & on C2 2 C2 is given by x - (z, w) = (e~ ¥z, e~ 2 w).
Hence

C*(C? x R) = C*(C?) x4 R = ((C?) x4 R
There is a large invariant ideal | := Go((C \ {0})?) in Go(C?)
which gives a large ideal

I x4 R C C*(C? xR).
Consider ¢ : [ := (C\{0})> = T=R/Z; (z,w)— .
We get I = Ind¥ Co(¢~1({1})) = Ind5 Co(C* x (0, 0))) w.r.t.
Z ~ C* x (0,00) 2 T x (0, 00)? n-(z,s,t) = (e"z,s,t)

Hence
I 316 R ~p Co(T x (0,00)2) x5 Z = (C(T) xp Z) ® Co((0,00)?).



Mackey's orbit method
Recall that a locally closed subset £ C Prim(A) corresponds to a
subquotient //J with J = ker E (= NpeceP), | = ker(E \ E).
For a: G — Aut(A) let G ~ Prim(A); (s, P) — s- P := as(P).
We say this action is regular if the following hold
(1) all orbits G(P) = {s- P :s & G} are locally closed in Prim(A).
(2) For all P, the map G/Gp — G(P); sGp—s- P
is a homeomorphism (with Gp :={s € G :s- P = P}).
(3) Ais separable, or Prim(A)/G is almost Hausdorff.

Item (1) implies that ¥ P € Prim(A) 3 a G-invariant subquotient
AG(p) = /G(p)/JG(p) of A such that G(P) = Prim(AG(p)).

ltem (2) together with the theorem on the previous slide gives
AG(p) = Inng Ap hence AG(P) X G ~M Ap Hap Gp,
for Ap := Ip/P the subquotient of A with {P} = Prim(Ap).

Item (3) implies that every primitive ideal (resp. irreducible rep.)
of A x4 G belongs to exactly one subquotient Ag(p) X G.



The orbit method

Indeed, if 0 — /| — A — A/l — 0 is a short exact sequence of
G-algebras, we always get a short exact sequence

0—=1X%X0qG—AxeG— (A/l)xq G—0
of the full crossed products! (Not always true for A Xeq G!)

In particular, G-invariant subquotients //J of A correspond to
subquotients (//J) xq G = (I Xo G)/(J X G) of A X, G.

Thus, under the assumptions of the previous slide we get

Prim(A x, G) = J Prim(Ag(p) ¥a G)

G(P)ePrim(A)/G

and Prim(Ag(p) Xa G) is homeomorphic to Prim(Ap x4 Gp) via
Mackey induction!

Similarly

(Asxin G =|

UG(P)EPrim(A)/G(AG(P) Xa G)

and (Ag(py Xa G) = (Ap X4 Gp)~ via Mackey induction!



Mackey's little group method

Question: How do Ap and Ap X, Gp look like?

Special case 1: R
If A= Go(X), then X = A (= Prim(A)) via x — ¢4 (eval. at x).

Then Ay = C({x}) = C, and Ax x G, = C*(Gx). We get

(Co(X) 3t G = UG( IS () p e G,

(and similarly for Prim(Co(X) %o G)).



An Example

Let G = R? x SLy(R). Write H := SL(R). Then

C*(G) = C*(R?) x SLa(R) = Co(R?) x4 SLy(R)
with SLa(R) ~ R?; (A, x) = Atx.
Then R2/H = {(9)}U{R?\ {($)}} with stabilizers

(8)*SL2( ) and H() {(i?):aeR}%}R

o

Thus
G = SLy(R)U {|Nd§2NRX(1) X € ]@} ,

where X((l))

—

3) = e*™™ is the character of R? corresponding to
) € R? = R2,

(
the vector (§



Mackey's little group method
Special case 2: Let a: G — Aut(A) with A type I. Then

~

A= Prim(A) via m—kerm and A;=K(H:),

Note:  Aut(K(Hy)) = PU(Hy) = U(H,)/T.

Let ar : G — PU(H;) = Aut(K(H;)) be the action of G; and let
¢ : PU — U be a Borel section. Then W :=coa, : G — U(H;)
satisfies  Ad(WsW;) = ax(s)ax(t) = ax(st) = Ad Wi.

Thus there exist a Borel map w; : G X G, — T such that
WsWe = wr(s, t) Wet.

On elements s, t, r € G, one easily checks that w, € Z%(G,,T).
Theorem (Mackey)

K(Hr)@C*(Growi ) 2 K(Hr)xaGr  via k®F = [s 1+ f(s)kW;]

and  (K(Hx) %0 G ={(z@ 1) x (W V): Ve (Ghw )}



Mackey's little group method: An application

Theorem (Mackey-Takesaki-Green) Suppose that A is type | and
a: G — Aut(A) satisfies the regularity conditions (1)—(3). Then_
A x, G is type | if and only if C*(G,,w:!) is type | for all 7 € A.

Proof A x4 G is type | if and only if
Vpe (Axa G) 1 p(Axa G) 2D K(H,y).

Since every p belongs to (Ag(r) Xa G) for one orbit G(m) C A, it
suffices to show that Ag(y) Xo G is type | for all m € A. But

AG(w) Mo G~y Ax Xo Gr ~y CF (Gﬂ'aw 1)

and the type | property is preserved by Morita equivalence. O

Note: the theorem always applies when G is compact!



Mackey's little group method: An application

Theorem (Dixmier-Pukanszky) Let G be a real (locally) algebraic
group. Then C*(G) is type |

Rough idea of Proof: Show by induction on dim(G) that C*(G)
type |. Easy if dim(G) = 1. If dim(G) > 1 there are two cases:
Case 1: G is reductive. Then the result is due to Harish Chandra.

Case 2: Let N denote the nilradical of G. Then G = N x R with
N unipotent and R reductive. Thus we may decompose

C*(G) = C*(N) x4 R.
By Kirillov, we know that
N =n*/Ad*(N) hence N/R=N/G=n*/Ad*(G).

Since the G-action is algebraic, the orbits are locally closed and
the Mackey machine applies. Hence

C*(G) type | <= Vre N: C*(Ry,w;t) type |

But dim(R;) < dim(G) (need some extra care for w_1!)



The Baum-Connes conjecture

The Baum-Connes conjecture predicted that a certain map
p: KPPP(G,A) = Ki(A Xyeq G)

is an isomorphism (not always true, but very often).
For (almost) connected G, this implies the

Connes-Kasparov conjecture

c

Kitdim(v)(C*(K))

if spin
&

K(CH(G)) = Ku(CH(V % K))
where K < G maximal compact subgroup, V = Tk (G/K).

A. Wassermann '87, V. Lafforgue '02 The Connes-Kasparov
conjecture (i.e., BC for C) holds for all reductive groups G.



Mackey-machine for Baum-Connes

Chabert, E., Oyono-Oyono, Nest 2000-2003
Mackey machine for BC:

(1) Suppose o : G ~ A such that A is type | and G ~ A is
reegular. Then the following (almost) holds:

Vr € A: G, satisfies BC for K(H;) = G satisfies BC for A
(2) If N < G is amenable, then
G satisfies BC < G := G/N satisfies BC for C*(N) ® K.

Theorem (Chabert-E-Nest '03) The Baum-Connes conjecture (for
C}(G) = C Xyed G) holds for all almost connected groups and for
all linear algebraic groups over Q.
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Thanks for your attention!



