Peter Hochs

Radboud University

RTNCG language course 24 May 2021

Peter Hochs (RU)

Image: A Image: A

Peter Hochs (RU)

Hilbert C*-module

24 May 0 / 36

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

I Definition and examples

A D N A B N A B N A B N

Background

Hilbert C^* -modules are generalisations of Hilbert spaces, where the field of scalars \mathbb{C} is replaced by a C^* -algebra A.

They were first defined by Paschke in 1973. They are closely related to K-theory, and key ingredients of the definition of Kasparov's KK-theory.

Pre-Hilbert modules

Let \mathcal{A} be an algebra over \mathbb{C} with an anti-linear anti-involution $a \mapsto a^*$. We say that $a \ge 0$ if there is a $b \in \mathcal{A}$ such that $a = b^*b$.

(4) (5) (4) (5)

Pre-Hilbert modules

Let \mathcal{A} be an algebra over \mathbb{C} with an anti-linear anti-involution $a \mapsto a^*$. We say that $a \ge 0$ if there is a $b \in \mathcal{A}$ such that $a = b^*b$.

Definition

A (right) pre-Hilbert \mathcal{A} -module is a complex vector space \mathcal{E} which is also a (linear) right \mathcal{A} -module, together with a map (-, -): $\mathcal{E} \times \mathcal{E} \to \mathcal{A}$ such that for all $u, v, w \in \mathcal{E}$, $a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$,

$$(u, v + w) = (u, v) + (u, w)$$

 $(v, wa) = (v, w)a$
 $(v, \lambda w) = \lambda(v, w)$
 $(v, w) = (w, v)^*$
 $(v, v) \ge 0$
 $(v, v) = 0 \Rightarrow v = 0.$

Pre-Hilbert modules

Let \mathcal{A} be an algebra over \mathbb{C} with an anti-linear anti-involution $a \mapsto a^*$. We say that $a \ge 0$ if there is a $b \in \mathcal{A}$ such that $a = b^*b$.

Definition

A (right) pre-Hilbert \mathcal{A} -module is a complex vector space \mathcal{E} which is also a (linear) right \mathcal{A} -module, together with a map (-, -): $\mathcal{E} \times \mathcal{E} \to \mathcal{A}$ such that for all $u, v, w \in \mathcal{E}$, $a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$,

$$(u, v + w) = (u, v) + (u, w)$$
$$(v, wa) = (v, w)a$$
$$(v, \lambda w) = \lambda(v, w)$$
$$(v, w) = (w, v)^{*}$$
$$(v, v) \ge 0$$
$$(v, v) = 0 \Rightarrow v = 0.$$

A pre-Hilbert $\mathbb C\text{-module}$ is a complex inner product space.

Peter Hochs (RU)

< 🗆 🕨 < 🗇 🕨

From now on, let A be a C^{*}-algebra, with norm $\|\cdot\|_A$. Let \mathcal{E} a pre-Hilbert A-module.

Definition

The **norm** of $v \in \mathcal{E}$ is

$$\|\mathbf{v}\|_{\mathcal{E}} = \sqrt{\|(\mathbf{v},\mathbf{v})\|_{\mathcal{A}}}$$

・ 何 ト ・ ヨ ト ・ ヨ ト

From now on, let A be a C^{*}-algebra, with norm $\|\cdot\|_A$. Let \mathcal{E} a pre-Hilbert A-module.

Definition

The **norm** of $v \in \mathcal{E}$ is

$$\|\mathbf{v}\|_{\mathcal{E}} = \sqrt{\|(\mathbf{v},\mathbf{v})\|_{\mathcal{A}}}$$

Lemma

The norm $\|\cdot\|_{\mathcal{E}}$ defines a norm on \mathcal{E} as a complex vector space.

From now on, let A be a C^{*}-algebra, with norm $\|\cdot\|_A$. Let \mathcal{E} a pre-Hilbert A-module.

Definition

The **norm** of $v \in \mathcal{E}$ is

$$\|\mathbf{v}\|_{\mathcal{E}} = \sqrt{\|(\mathbf{v},\mathbf{v})\|_{\mathcal{A}}}$$

Lemma

The norm $\|\cdot\|_{\mathcal{E}}$ defines a norm on \mathcal{E} as a complex vector space.

Definition

A pre-Hilbert A-module \mathcal{E} is a **(right) Hilbert** A-module if it is complete in the norm $\|\cdot\|_{\mathcal{E}}$.

Example 1: Hilbert spaces

A Hilbert \mathbb{C} -module is a Hilbert space.

Image: A matching of the second se

Example 2: A over itself

View A as a right module over itself by right multiplication. For $a, b \in A$, define

$$(a,b)=a^*b.$$

Then A becomes a Hilbert A-module.

(3)

Example 2: A over itself

View A as a right module over itself by right multiplication. For $a, b \in A$, define

$$(a,b)=a^*b.$$

Then A becomes a Hilbert A-module.

Here we use the identity

$$||a^*a||_A = ||a||_A^2.$$

4 3 > 4 3

Example 3: A^n

More generally, for any $n \in \mathbb{N}$, the right A-module A^n is a Hilbert A-module, with the inner product

$$\langle v, w \rangle = \sum_{j=1}^{n} v_j^* w_j$$

for $v, w \in A^n$.

(日) (四) (日) (日) (日)

Example 4: the standard Hilbert A-module

Let

$$\mathcal{H}_A := \Big\{ (a_j)_{j=1}^\infty; a_j \in A, \sum_{j=1}^\infty a_j^* a_j \text{ converges in } A \Big\}.$$

It has a natural right A module structure, and inner product

$$((a_j)_{j=1}^{\infty}, (b_j)_{j=1}^{\infty}) = \sum_{j=1}^{\infty} a_j^* b_j.$$

This is the standard Hilbert A-module.

(4) (3) (4) (4) (4)

Example 5: spaces of continuous sections

Let X be a compact Hausdorff space, and $E \to X$ a complex vector bundle. Let $(-, -)_E$ be a Hermitian metric on E, linear in the second entry.

Consider the space $\Gamma(E)$ of continuous sections of E. It is a right C(X)-module by pointwise multiplication.

For $s_1, s_2 \in \Gamma(E)$, define $(s_1, s_2) \in C(X)$ by

$$(s_1, s_2)(x) = (s_1(x), s_2(x))_E.$$

Then $\Gamma(E)$ is a Hilbert C(X)-module.

• • = • • = •

Example 6: proper actions

Let X be a locally compact Hausdorff space, with a proper action by a locally compact group G. Let μ be a G-invariant Borel measure on X, so that every relatively compact open set has finite, nonzero measure.

Example 6: proper actions

Let X be a locally compact Hausdorff space, with a proper action by a locally compact group G. Let μ be a G-invariant Borel measure on X, so that every relatively compact open set has finite, nonzero measure.

Let $E \to X$ be a *G*-vector bundle, with a *G*-invariant Hermitian metric $(-, -)_E$. For $s_1, s_2, \in \Gamma_c(E)$, define

$$(s_1, s_2)_{L^2(E)} = \int_X (s_1(x), s_2(x))_E d\mu(x).$$

Example 6: proper actions (cont'd) For $g \in G$, $x \in X$ and $s \in \Gamma_c(E)$, define

$$(g \cdot s)(x) = g \cdot (s(g^{-1}x)).$$

• For $f \in C_c(G)$, define

$$s \cdot f = \int_G f(g)(g^{-1} \cdot s) \, dg.$$

• For $s_1, s_2 \in \Gamma_c(E)$, define

$$(s_1, s_2)(g) = (s_1, g \cdot s_2)_{L^2(E)}.$$

Because the action is proper, this defines

$$(s_1, s_2) \in C_c(G) \subset C^*G.$$

This makes $\Gamma_c(E)$ a pre-Hilbert $C_c(G)$ -module. We can complete it to a Hilbert $C^*(G)$ -module.

Peter Hochs (RU)

II Operators on Hilbert C^* -modules

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Adjointable operators

Let \mathcal{E} be a Hilbert A-module.

Definition

An **adjointable operator** on \mathcal{E} is a map $T: \mathcal{E} \to \mathcal{E}$ for which there exists a map $T^*: \mathcal{E} \to \mathcal{E}$ such that for all $v, w \in \mathcal{E}$,

$$(Tv,w)=(v,T^*w).$$

Adjointable operators

Let \mathcal{E} be a Hilbert A-module.

Definition

An **adjointable operator** on \mathcal{E} is a map $T: \mathcal{E} \to \mathcal{E}$ for which there exists a map $T^*: \mathcal{E} \to \mathcal{E}$ such that for all $v, w \in \mathcal{E}$,

$$(Tv,w)=(v,T^*w).$$

Lemma

Every adjointable operator is a bounded, linear map of A-modules.

.

Adjointable operators

Let \mathcal{E} be a Hilbert A-module.

Definition

An **adjointable operator** on \mathcal{E} is a map $T: \mathcal{E} \to \mathcal{E}$ for which there exists a map $T^*: \mathcal{E} \to \mathcal{E}$ such that for all $v, w \in \mathcal{E}$,

$$(Tv,w)=(v,T^*w).$$

Lemma

Every adjointable operator is a bounded, linear map of A-modules.

Lemma

The adjointable operators on a \mathcal{E} form a C^* -algebra with respect to the operator norm.

This C^* -algebra is denoted by $\mathcal{L}(\mathcal{E})$.

(4) (日本)

Example of a non-adjointable bounded module endomorphism

This example is due to Paschke.

Let A = C([0, 1]) and $J = \{f \in A; f(0) = 0\}$. Consider the Hilbert A-module $\mathcal{E} := J \times A$, with inner product

$$((f_1,g_1),(f_1,g_2)) = \bar{f}_1 f_2 + \bar{g}_1 g_2,$$

for $f_1, f_2 \in J$ and $g_1, g_2 \in A$.

< ∃ > < ∃

Example of a non-adjointable bounded module endomorphism

This example is due to Paschke.

Let A = C([0, 1]) and $J = \{f \in A; f(0) = 0\}$. Consider the Hilbert A-module $\mathcal{E} := J \times A$, with inner product

$$((f_1,g_1),(f_1,g_2)) = \bar{f}_1 f_2 + \bar{g}_1 g_2,$$

for $f_1, f_2 \in J$ and $g_1, g_2 \in A$.

Define $T: \mathcal{E} \to \mathcal{E}$ by

$$T(f,g)=(0,f)$$

for $f \in J$, $g \in A$. Then T is a bounded module map, but **not adjointable**.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Example: compact operators?

The compact operators should be the ones that are 'almost finite-rank'.

Example

Let X be a compact Hausdorff space, and consider C(X) as a Hilbert C(X)-module. Let $M_f : C(X) \to C(X)$ be given by multiplication by a nonzero $f \in C(X)$.

- C(X) is a one-dimensional module over itself, so M_f 'should be' finite-rank
- but M_f is **not compact** in the Banach space sense.

(4) (5) (4) (5)

Compact operators

Let \mathcal{E} be a Hilbert A-module.

Definition

The space *F*(*E*) of **finite-rank operators** on *E* is spanned by operators of the form *θ_{v,w}*: *E* → *E*, for *v*, *w* ∈ *E*, defined by

$$\theta_{\mathbf{v},\mathbf{w}}(u)=\mathbf{v}(w,u).$$

The space K(E) of compact operators on E is the closure of F(E) in L(E).

Compact operators

Let \mathcal{E} be a Hilbert A-module.

Definition

The space *F*(*E*) of **finite-rank operators** on *E* is spanned by operators of the form *θ_{v,w}*: *E* → *E*, for *v*, *w* ∈ *E*, defined by

$$\theta_{v,w}(u)=v(w,u).$$

The space K(E) of compact operators on E is the closure of F(E) in L(E).

Lemma

The space
$$\mathcal{K}(\mathcal{E})$$
 is a closed *-ideal in $\mathcal{L}(\mathcal{E})$.

通 ト イ ヨ ト イ ヨ ト

Example 1: Hilbert spaces

If \mathcal{E} is a Hilbert \mathbb{C} -module (a Hilbert space), then

- \bullet the adjointable operators on ${\mathcal E}$ are exactly the bounded ones
- the compact operators on $\ensuremath{\mathcal{E}}$ are the compact operators in the usual sense.

Example 2: A over itself

For the Hilbert A-module A,

- $\mathcal{L}(A) = \mathcal{M}(A)$, the multiplier algebra of A
- $\mathcal{K}(A) = A$, via left multiplication.

(4) (3) (4) (4) (4)

Example 3: A^n

For the Hilbert A-module A^n ,

- $\mathcal{L}(A) = M_n(\mathcal{M}(A))$
- $\mathcal{K}(A) = M_n(A)$.

A D N A B N A B N A B N

Example 4: \mathcal{H}_A

We write \mathcal{K} for the C^* -algebra of compact operators on an infinite-dimensional separable Hilbert space.

For the Hilbert A-module \mathcal{H}_A ,

- $\mathcal{L}(\mathcal{H}_A) = \mathcal{M}(A \otimes \mathcal{K})$, the multiplier algebra of $A \otimes \mathcal{K}$
- $\mathcal{K}(\mathcal{H}_A) = A \otimes \mathcal{K}.$

A (10) < A (10) < A (10)</p>

Fredholm operators

Definition

An operator $F \in \mathcal{L}(\mathcal{E})$ is A-**Fredholm** if it is invertible modulo $\mathcal{K}(\mathcal{E})$.

Theorem (Mingo, 1987)

Suppose that $1 \in A$. Let F be an A-Fredholm operator on a Hilbert A-module \mathcal{E} . Then there is a compact operator $K \in \mathcal{K}(\mathcal{E})$ such that the operator

$$F':=(F+K)\oplus 1 \quad \in \mathcal{L}(\mathcal{E}\oplus \mathcal{H}_{\mathcal{A}}),$$

has closed range, and the A-modules ker F' and ker F'^* are finitely generated and projective.

(Kasparov's stabilisation theorem: if \mathcal{E} is separable, then $\mathcal{E} \oplus \mathcal{H}_A \cong \mathcal{H}_A$.)

イロト イポト イヨト イヨト

Example: proper actions

Consider a locally compact group G acting properly an isometrically on a Riemannian manifold M, and let $E \to M$ be a Hermitian G-vector bundle. Let \mathcal{E} be the Hilbert $C^*(G)$ -module defined by completing $\Gamma_c(E)$ in the inner product

$$(s_1, s_2)(g) = (s_1, g \cdot s_2)_{L^2(E)}.$$

Example: proper actions

Consider a locally compact group G acting properly an isometrically on a Riemannian manifold M, and let $E \to M$ be a Hermitian G-vector bundle. Let \mathcal{E} be the Hilbert $C^*(G)$ -module defined by completing $\Gamma_c(E)$ in the inner product

$$(s_1, s_2)(g) = (s_1, g \cdot s_2)_{L^2(E)}.$$

Let D be a first-order, elliptic, self-adjoint differential operator on E. Set

$$\tilde{F} := \frac{D}{\sqrt{D^2 + 1}}.$$

This operator does not preserve $\Gamma_c(E)$.

A B A A B A

Example: proper actions (cont'd)

We had

$$ilde{F} := rac{D}{\sqrt{D^2 + 1}}.$$

Now suppose that M/G is compact. Let $\chi \in C_c(M)$ be such that for all $m \in M$,

٠

$$\int_G \chi(gm)^2 \, dg = 1.$$

(4) (5) (4) (5)

Example: proper actions (cont'd)

We had

$$ilde{F} := rac{D}{\sqrt{D^2 + 1}}.$$

Now suppose that M/G is compact. Let $\chi \in C_c(M)$ be such that for all $m \in M$,

$$\int_G \chi(gm)^2 \, dg = 1.$$

Proposition

The operator

$$F=\int_G g\chi \tilde{F}\chi g^{-1}\,dg.$$

preserves $\Gamma_c(E)$, and extends to a $C^*(G)$ -Fredholm operator on \mathcal{E} .

The operators F and \tilde{F} are homotopic in a suitable sense.

.

Peter Hochs (RU)

(4) (3) (4) (4) (4)

Unbounded operators

On a Hilbert C^* -module, we have notions of (densely defined) unbounded operators and their adjoints.

(4) (3) (4) (4) (4)

Unbounded operators

On a Hilbert C^* -module, we have notions of (densely defined) unbounded operators and their adjoints.

Definition

An unbounded operator T on a Hilbert C^* -module \mathcal{E} is regular if

- dom $(T^*) \subset \mathcal{E}$ is dense
- $\operatorname{im}(1 + T^*T) \subset \mathcal{E}$ is dense.

Example

If $A = \mathbb{C}$, then every closed operator is regular.

.

Unbounded operators

On a Hilbert C^* -module, we have notions of (densely defined) unbounded operators and their adjoints.

Definition

An unbounded operator T on a Hilbert C^* -module \mathcal{E} is regular if

- dom $(T^*) \subset \mathcal{E}$ is dense
- $\operatorname{im}(1 + T^*T) \subset \mathcal{E}$ is dense.

Example

If $A = \mathbb{C}$, then every closed operator is regular.

Proposition (Baaj–Julg, 1983)

If T is regular, then
$$\frac{T}{\sqrt{T^*T+1}}$$
 is adjointable.

More generally, there is a notion of functional calculus of regular self-adjoint operators.

Peter Hochs (RU)

III Bimodules and tensor products

Image: A matrix

(4) (3) (4) (4) (4)

Bimodules

Let A and B be C^* -algebras.

Definition

A **Hilbert** (A, B)-**bimodule** is a Hilbert *B*-module \mathcal{E} together with a *-homomorphism $A \to \mathcal{L}(\mathcal{E})$.

In particular, a Hilbert (A, B)-bimodule is a left A-module and a right B-module.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Bimodules

Let A and B be C^* -algebras.

Definition

A **Hilbert** (A, B)-**bimodule** is a Hilbert *B*-module \mathcal{E} together with a *-homomorphism $A \to \mathcal{L}(\mathcal{E})$.

In particular, a Hilbert (A, B)-bimodule is a left A-module and a right B-module.

- A Hilbert (\mathbb{C} , *B*)-bimodule is a Hilbert *B*-module.
- A Hilbert (A, \mathbb{C}) -bimodule is a *-representation of A.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Tensor products

Let

- A, B and C be C^* -algebras
- \mathcal{E} be a Hilbert (A, B)-bimodule, and \mathcal{F} a Hilbert (B, C)-bimodule
- (-,-)_E be the B-valued inner product on E, and (-,-)_F the C-valued inner product on F.

Tensor products

Let

- A, B and C be C^* -algebras
- \mathcal{E} be a Hilbert (A, B)-bimodule, and \mathcal{F} a Hilbert (B, C)-bimodule
- (-,-)_E be the B-valued inner product on E, and (-,-)_F the C-valued inner product on F.

Consider the algebraic tensor product $\mathcal{E} \otimes \mathcal{F}$ over \mathbb{C} . For $v_1, v_2 \in \mathcal{E}$ and $w_1, w_2 \in \mathcal{F}$, define

$$(v_1 \otimes w_1, v_2 \otimes w_2) = (w_1, (v_1, v_2)_{\mathcal{E}} w_2)_{\mathcal{F}} \in C.$$
(1)

In the second entry, we used the left B-module structure on \mathcal{F} .

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Tensor products

Let

- A, B and C be C^* -algebras
- \mathcal{E} be a Hilbert (A, B)-bimodule, and \mathcal{F} a Hilbert (B, C)-bimodule
- (-,-)_E be the B-valued inner product on E, and (-,-)_F the C-valued inner product on F.

Consider the algebraic tensor product $\mathcal{E} \otimes \mathcal{F}$ over \mathbb{C} . For $v_1, v_2 \in \mathcal{E}$ and $w_1, w_2 \in \mathcal{F}$, define

$$(\mathbf{v}_1 \otimes \mathbf{w}_1, \mathbf{v}_2 \otimes \mathbf{w}_2) = (\mathbf{w}_1, (\mathbf{v}_1, \mathbf{v}_2)_{\mathcal{E}} \mathbf{w}_2)_{\mathcal{F}} \in \mathcal{C}.$$
(1)

In the second entry, we used the left B-module structure on \mathcal{F} .

Definition

The **tensor product of** \mathcal{E} and \mathcal{F} over B is the completion of $\mathcal{E} \otimes \mathcal{F}$ modulo the vectors of norm 0 in the inner product (1). It is denoted by

$$\mathcal{E}\otimes_{B}\mathcal{F}.$$

This tensor product is a Hilbert (A, C)-bimodule.

Tensor products (cont'd)

For all $v \in \mathcal{E}$, $w \in \mathcal{F}$ and $b \in B$,

$$\langle vb \otimes w - v \otimes bw, vb \otimes w - v \otimes bw \rangle = 0.$$

Hence elements of the form $vb \otimes w - v \otimes bw$ are divided out in the definition of $\mathcal{E} \otimes_B \mathcal{F}$.

(4) (5) (4) (5)

Example 1: pullbacks of vector bundles

Let $f: X \to Y$ be a continuous map between compact Hausdorff spaces. Let $E \to Y$ be a complex vector bundle. Then

- $\Gamma(E)$ is a Hilbert C(Y)-module, i.e. a Hilbert $(\mathbb{C}, C(Y))$ -bimodule
- C(X) is a Hilbert C(X)-module, and the pullback

 $f^*\colon C(Y)\to C(X)\to \mathcal{L}(C(X))$

makes C(X) a Hilbert (C(Y), C(X))-bimodule.

くぼう くほう くほう しほ

Example 1: pullbacks of vector bundles

Let $f: X \to Y$ be a continuous map between compact Hausdorff spaces. Let $E \to Y$ be a complex vector bundle. Then

- $\Gamma(E)$ is a Hilbert C(Y)-module, i.e. a Hilbert $(\mathbb{C}, C(Y))$ -bimodule
- C(X) is a Hilbert C(X)-module, and the pullback

 $f^*\colon C(Y)\to C(X)\to \mathcal{L}(C(X))$

makes C(X) a Hilbert (C(Y), C(X))-bimodule.

Now

$$\Gamma(E)\otimes_{C(Y)}C(X)=\Gamma(f^*E),$$

a Hilbert C(X)-module.

くぼう くほう くほう しほ

Example 2: Rieffel induction

This example is due to Rieffel.

Let G be a locally compact group, and H < G a closed subgroup. Fix left Haar measures, and let δ_G and δ_H be the modular functions of G and H, respectively.

< ∃ > < ∃

Example 2: Rieffel induction

This example is due to Rieffel.

Let G be a locally compact group, and H < G a closed subgroup. Fix left Haar measures, and let δ_G and δ_H be the modular functions of G and H, respectively.

Consider the right action by $C_c(H)$ on $C_c(G)$ given by

$$(f_G f_H)(g) = \int_H \frac{\delta_G(h)^{1/2}}{\delta_H(h)^{1/2}} f_G(gh^{-1}) f_H(h) dh.$$

Consider the $C_c(H)$ -valued inner product on $C_c(G)$ given by

$$(f_1, f_2)(h) = \frac{\delta_G(h)^{1/2}}{\delta_H(h)^{1/2}} \int_G \bar{f}_1(g^{-1}) f_2(g^{-1}h) dg.$$

This makes $C_c(G)$ a pre-Hilbert $C_c(H)$ -module. Let \mathcal{E}_H^G be its completion to a Hilbert $C^*(H)$ -module.

イロト 不得 トイラト イラト 一日

Example 2: Rieffel induction (cont'd)

The Hilbert $C^*(H)$ -module \mathcal{E}_H^G has a left action by $C^*(G)$ that extends the left convolution action by $C_c(G)$ on itself. This makes \mathcal{E}_H^G a Hilbert $(C^*(G), C^*(H))$ -bimodule.

Example 2: Rieffel induction (cont'd)

The Hilbert $C^*(H)$ -module \mathcal{E}_H^G has a left action by $C^*(G)$ that extends the left convolution action by $C_c(G)$ on itself. This makes \mathcal{E}_H^G a Hilbert $(C^*(G), C^*(H))$ -bimodule.

In this way, every *-representation V of $C^*(H)$ gives an induced *-representation

 $\mathcal{E}_{H}^{G}\otimes_{C^{*}(H)}V$

of $C^*(G)$.

Theorem (Rieffel, 1974)

This implements Mackey induction.

Parabolic induction: a modular function

The following construction is due to Pierre Clare.

Let G be a connected, linear, real semisimple Lie group, and P < G a cuspidal parabolic subgroup, with Langlands decomposition P = MAN. Set L = MA.

< ∃ > < ∃

Parabolic induction: a modular function

The following construction is due to Pierre Clare.

Let G be a connected, linear, real semisimple Lie group, and P < G a cuspidal parabolic subgroup, with Langlands decomposition P = MAN. Set L = MA.

Fix left Haar measures dg on G, and dn on N. Let d(gN) be the G-invariant measure on G/N such that for all $f \in C_c(G)$,

$$\int_{G/N} \int_N f(gn) \, dn \, d(gN) = \int_G f(g) \, dg.$$

Let $\delta \colon L \to \mathbb{R}_+$ be such that for all $f \in C_c(G/N)$ and $l \in L$,

$$\int_{G/N} f(g|N) d(gN) = \delta(I)^{-1} \int_{G/N} f(gN) d(gN).$$

Then $\delta(I) = |\det(\operatorname{Ad}(I): \mathfrak{n} \to \mathfrak{n})| = e^{2\rho(\log a)}$ if $I = ma \in L$.

イロト 不得 トイラト イラト 一日

Parabolic induction: a Hilbert $C^*(L)$ -module

Consider the right action by $C_c^{\infty}(L)$ on $C_c^{\infty}(G/N)$ given by

$$(f_{G/N}f_L)(gN) = \int_L \delta(I)^{1/2} f_{G/N}(gIN) f_L(I^{-1}) dI.$$

< □ > < 同 > < 回 > < Ξ > < Ξ

Parabolic induction: a Hilbert $C^*(L)$ -module

Consider the right action by $C_c^{\infty}(L)$ on $C_c^{\infty}(G/N)$ given by

$$(f_{G/N}f_L)(gN) = \int_L \delta(I)^{1/2} f_{G/N}(gIN) f_L(I^{-1}) dI.$$

For $f_1, f_2 \in C^\infty_c(G/N)$, define $(f_1, f_2) \in C^\infty_c(L)$ by

$$(f_1, f_2)(I) = \delta(I)^{1/2} \int_{G/N} \bar{f}_1(gN) f_2(gIN) d(gN).$$

(日) (四) (日) (日) (日)

Parabolic induction: a Hilbert $C^*(L)$ -module

Consider the right action by $C_c^{\infty}(L)$ on $C_c^{\infty}(G/N)$ given by

$$(f_{G/N}f_L)(gN) = \int_L \delta(I)^{1/2} f_{G/N}(gIN) f_L(I^{-1}) dI.$$

For $f_1, f_2 \in C^\infty_c(G/N)$, define $(f_1, f_2) \in C^\infty_c(L)$ by

$$(f_1, f_2)(I) = \delta(I)^{1/2} \int_{G/N} \bar{f}_1(gN) f_2(gIN) d(gN).$$

Definition

The Hilbert $C^*(L)$ -module $C^*(G/N)$ is the completion of the pre-Hilbert $C_c^{\infty}(L)$ -module $C_c^{\infty}(G/N)$.

Parabolic induction: action by $C^*(G)$

For $f_G \in C^\infty_c(G)$, $f_{G/N} \in C^\infty_c(G/N)$ and $g \in G$, define

$$(f_G f_{G/N})(gN) = \int_G f_G(g') f_{G/N}(g'^{-1}gN) dg'.$$

This extends to a *-homomorphism $C^*(G) \to \mathcal{L}(C^*(G/N))$.

Parabolic induction: action by $C^*(G)$

For $f_G \in C^\infty_c(G)$, $f_{G/N} \in C^\infty_c(G/N)$ and $g \in G$, define

$$(f_G f_{G/N})(gN) = \int_G f_G(g') f_{G/N}(g'^{-1}gN) dg'.$$

This extends to a *-homomorphism $C^*(G) \to \mathcal{L}(C^*(G/N))$.

In this way, $C^*(G/N)$ becomes a Hilbert $(C^*(G), C^*(L))$ -bimodule.

Parabolic induction as a tensor product

Consider a unitary irreducible representation π of L on a Hilbert space H. Then π defines a *-representation

$$\pi\colon C^*(L) o \mathcal{L}(H)$$

by continuous extension of

$$\pi(f) = \int_L f(I)\pi(I) \, dI.$$

< ∃ > < ∃

Parabolic induction as a tensor product

Consider a unitary irreducible representation π of L on a Hilbert space H. Then π defines a *-representation

$$\pi\colon C^*(L) o \mathcal{L}(H)$$

by continuous extension of

$$\pi(f) = \int_L f(I)\pi(I) \, dI.$$

Theorem (Clare, 2013)

The tensor product

 $C^*(G/N) \otimes_{C^*(L)} H$

is the induced representation $\operatorname{Ind}_{P}^{G}(\pi)$, viewed as a *-representation of $C^{*}(G)$.

イロト イポト イヨト イヨ

Morita equivalence

Let A and B be C^* -algebras.

Definition

The algebra A is **strongly Morita equivalent** to B if there is a Hilbert (A, B)-bimodule \mathcal{E} such that

• span $\{(v, w); v, w \in \mathcal{E}\}$ is dense in B

•
$$\mathcal{K}(\mathcal{E}) \cong A$$
.

Morita equivalence

Let A and B be C^* -algebras.

Definition

The algebra A is **strongly Morita equivalent** to B if there is a Hilbert (A, B)-bimodule \mathcal{E} such that

• span
$$\{(v, w); v, w \in \mathcal{E}\}$$
 is dense in B

•
$$\mathcal{K}(\mathcal{E}) \cong A$$
.

Proposition (Rieffel, 1974)

Morita equivalence is an equivalence relation on C^* -algebras.

Stable isomorphism

Example

We view \mathcal{H}_A as an $(A \otimes \mathcal{K}, A)$ -bimodule. Then

• span{(v, w); $v, w \in \mathcal{H}_A$ } contains span{ a^*b ; $a, b \in A$ } and is dense in A

•
$$\mathcal{K}(\mathcal{H}_A) = A \otimes \mathcal{K}.$$

So $A \otimes \mathcal{K}$ is strongly Morita equivalent to A.

Stable isomorphism

Example

We view \mathcal{H}_A as an $(A \otimes \mathcal{K}, A)$ -bimodule. Then

• span{(v, w); $v, w \in \mathcal{H}_A$ } contains span{ a^*b ; $a, b \in A$ } and is dense in A

•
$$\mathcal{K}(\mathcal{H}_A) = A \otimes \mathcal{K}.$$

So $A \otimes \mathcal{K}$ is strongly Morita equivalent to A.

Theorem (Brown, 1977)

- If $A \otimes \mathcal{K} \cong B \otimes \mathcal{K}$, then A and B are strongly Morita equivalent.
- If A and B are strongly Morita equivalent and have countable approximate units, then $A \otimes \mathcal{K} \cong B \otimes \mathcal{K}$.

Morita equivalence and representations

Definition

A **Hermitian** A-module is a *-representation $\pi: A \to \mathcal{B}(H)$ in a Hilbert space H, such that

$$\{\pi(a)v; a \in A, v \in H\} \subset H$$

is dense. The category of such modules and bounded module homomorphisms is denoted by HMod(A).

Morita equivalence and representations

Definition

A **Hermitian** A-module is a *-representation $\pi: A \to \mathcal{B}(H)$ in a Hilbert space H, such that

$$\{\pi(a)v; a \in A, v \in H\} \subset H$$

is dense. The category of such modules and bounded module homomorphisms is denoted by HMod(A).

Theorem (Rieffel)

If A and B are strongly Morita equivalent, then tensoring with the corresponding bimodules defines an equivalence of categories between HMod(A) and HMod(B).

• • = • • = •

More information

General background:

• E. Christopher Lance, *Hilbert C*-modules: a toolkit for operator algebraists*, Cambridge University Press, 1995.

Relations to K(K)-theory:

- Bruce Blackadar, *K-theory for operator algebras*, second edition, Cambridge University Press, 1998.
- Nigel Higson, *A primer on KK-theory*, Proc. Sympos. Pure Math., 51, Part 1, AMS, 1990.
- N.E. Wegge–Olsen, *K-theory and C*-algebras*, Oxford Science Publications, 1993.

A B b A B b

Thank you

< □ > < □ > < □ > < □ > < □ >