Hilbert C*-modules

Peter Hochs

Radboud University

RTNCG language course
 24 May 2021

(1) Definition and examples
(2) Operators on Hilbert C^{*}-modules
(3) Bimodules and tensor products

I Definition and examples

Background

Hilbert C^{*}-modules are generalisations of Hilbert spaces, where the field of scalars \mathbb{C} is replaced by a C^{*}-algebra A.

They were first defined by Paschke in 1973. They are closely related to K-theory, and key ingredients of the definition of Kasparov's KK-theory.

Pre-Hilbert modules

Let \mathcal{A} be an algebra over \mathbb{C} with an anti-linear anti-involution $a \mapsto a^{*}$. We say that $a \geq 0$ if there is a $b \in \mathcal{A}$ such that $a=b^{*} b$.

Pre-Hilbert modules

Let \mathcal{A} be an algebra over \mathbb{C} with an anti-linear anti-involution $a \mapsto a^{*}$. We say that $a \geq 0$ if there is a $b \in \mathcal{A}$ such that $a=b^{*} b$.

Definition

A (right) pre-Hilbert \mathcal{A}-module is a complex vector space \mathcal{E} which is also a (linear) right \mathcal{A}-module, together with a map $(-,-): \mathcal{E} \times \mathcal{E} \rightarrow \mathcal{A}$ such that for all $u, v, w \in \mathcal{E}, a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$,

$$
\begin{aligned}
(u, v+w) & =(u, v)+(u, w) \\
(v, w a) & =(v, w) a \\
(v, \lambda w) & =\lambda(v, w) \\
(v, w) & =(w, v)^{*} \\
(v, v) & \geq 0 \\
(v, v)=0 & \Rightarrow v=0
\end{aligned}
$$

Pre-Hilbert modules

Let \mathcal{A} be an algebra over \mathbb{C} with an anti-linear anti-involution $a \mapsto a^{*}$. We say that $a \geq 0$ if there is a $b \in \mathcal{A}$ such that $a=b^{*} b$.

Definition

A (right) pre-Hilbert \mathcal{A}-module is a complex vector space \mathcal{E} which is also a (linear) right \mathcal{A}-module, together with a map $(-,-): \mathcal{E} \times \mathcal{E} \rightarrow \mathcal{A}$ such that for all $u, v, w \in \mathcal{E}, a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$,

$$
\begin{aligned}
(u, v+w) & =(u, v)+(u, w) \\
(v, w a) & =(v, w) a \\
(v, \lambda w) & =\lambda(v, w) \\
(v, w) & =(w, v)^{*} \\
(v, v) & \geq 0 \\
(v, v)=0 & \Rightarrow v=0
\end{aligned}
$$

A pre-Hilbert \mathbb{C}-module is a complex inner product space.

Hilbert C^{*}-modules

From now on, let A be a C^{*}-algebra, with norm $\|\cdot\|_{A}$. Let \mathcal{E} a pre-Hilbert A-module.

Definition
The norm of $v \in \mathcal{E}$ is

$$
\|v\|_{\mathcal{E}}=\sqrt{\|(v, v)\|_{A}}
$$

Hilbert C^{*}-modules

From now on, let A be a C^{*}-algebra, with norm $\|\cdot\|_{A}$. Let \mathcal{E} a pre-Hilbert A-module.

Definition
The norm of $v \in \mathcal{E}$ is

$$
\|v\|_{\mathcal{E}}=\sqrt{\|(v, v)\|_{A}}
$$

Lemma

The norm $\|\cdot\|_{\mathcal{E}}$ defines a norm on \mathcal{E} as a complex vector space.

Hilbert C^{*}-modules

From now on, let A be a C^{*}-algebra, with norm $\|\cdot\|_{A}$. Let \mathcal{E} a pre-Hilbert A-module.

Definition
The norm of $v \in \mathcal{E}$ is

$$
\|v\|_{\mathcal{E}}=\sqrt{\|(v, v)\|_{A}}
$$

Lemma

The norm $\|\cdot\|_{\mathcal{E}}$ defines a norm on \mathcal{E} as a complex vector space.

Definition

A pre-Hilbert A-module \mathcal{E} is a (right) Hilbert A-module if it is complete in the norm $\|\cdot\|_{\mathcal{E}}$.

Example 1: Hilbert spaces

A Hilbert \mathbb{C}-module is a Hilbert space.

Example 2: A over itself

View A as a right module over itself by right multiplication.
For $a, b \in A$, define

$$
(a, b)=a^{*} b
$$

Then A becomes a Hilbert A-module.

Example 2: A over itself

View A as a right module over itself by right multiplication.
For $a, b \in A$, define

$$
(a, b)=a^{*} b
$$

Then A becomes a Hilbert A-module.
Here we use the identity

$$
\left\|a^{*} a\right\|_{A}=\|a\|_{A}^{2} .
$$

Example 3: A^{n}

More generally, for any $n \in \mathbb{N}$, the right A-module A^{n} is a Hilbert A-module, with the inner product

$$
\langle v, w\rangle=\sum_{j=1}^{n} v_{j}^{*} w_{j}
$$

for $v, w \in A^{n}$.

Example 4: the standard Hilbert A-module

Let

$$
\mathcal{H}_{A}:=\left\{\left(a_{j}\right)_{j=1}^{\infty} ; a_{j} \in A, \sum_{j=1}^{\infty} a_{j}^{*} a_{j} \text { converges in } A\right\}
$$

It has a natural right A module structure, and inner product

$$
\left(\left(a_{j}\right)_{j=1}^{\infty},\left(b_{j}\right)_{j=1}^{\infty}\right)=\sum_{j=1}^{\infty} a_{j}^{*} b_{j} .
$$

This is the standard Hilbert A-module.

Example 5: spaces of continuous sections

Let X be a compact Hausdorff space, and $E \rightarrow X$ a complex vector bundle. Let $(-,-)_{E}$ be a Hermitian metric on E, linear in the second entry.

Consider the space $\Gamma(E)$ of continuous sections of E. It is a right $C(X)$-module by pointwise multiplication.

For $s_{1}, s_{2} \in \Gamma(E)$, define $\left(s_{1}, s_{2}\right) \in C(X)$ by

$$
\left(s_{1}, s_{2}\right)(x)=\left(s_{1}(x), s_{2}(x)\right)_{E}
$$

Then $\Gamma(E)$ is a Hilbert $C(X)$-module.

Example 6: proper actions

Let X be a locally compact Hausdorff space, with a proper action by a locally compact group G. Let μ be a G-invariant Borel measure on X, so that every relatively compact open set has finite, nonzero measure.

Example 6: proper actions

Let X be a locally compact Hausdorff space, with a proper action by a locally compact group G. Let μ be a G-invariant Borel measure on X, so that every relatively compact open set has finite, nonzero measure.

Let $E \rightarrow X$ be a G-vector bundle, with a G-invariant Hermitian metric $(-,-)_{E}$. For $s_{1}, s_{2}, \in \Gamma_{c}(E)$, define

$$
\left(s_{1}, s_{2}\right)_{L^{2}(E)}=\int_{X}\left(s_{1}(x), s_{2}(x)\right)_{E} d \mu(x)
$$

Example 6: proper actions (cont'd)
For $g \in G, x \in X$ and $s \in \Gamma_{c}(E)$, define

$$
(g \cdot s)(x)=g \cdot\left(s\left(g^{-1} x\right)\right) .
$$

- For $f \in C_{c}(G)$, define

$$
s \cdot f=\int_{G} f(g)\left(g^{-1} \cdot s\right) d g
$$

- For $s_{1}, s_{2} \in \Gamma_{c}(E)$, define

$$
\left(s_{1}, s_{2}\right)(g)=\left(s_{1}, g \cdot s_{2}\right)_{L^{2}(E)} .
$$

Because the action is proper, this defines

$$
\left(s_{1}, s_{2}\right) \in C_{c}(G) \subset C^{*} G
$$

This makes $\Gamma_{C}(E)$ a pre-Hilbert $C_{c}(G)$-module. We can complete it to a Hilbert $C^{*}(G)$-module.

II Operators on Hilbert C^{*}-modules

Adjointable operators

Let \mathcal{E} be a Hilbert A-module.

Definition

An adjointable operator on \mathcal{E} is a map $T: \mathcal{E} \rightarrow \mathcal{E}$ for which there exists a map $T^{*}: \mathcal{E} \rightarrow \mathcal{E}$ such that for all $v, w \in \mathcal{E}$,

$$
(T v, w)=\left(v, T^{*} w\right)
$$

Adjointable operators

Let \mathcal{E} be a Hilbert A-module.

Definition

An adjointable operator on \mathcal{E} is a map $T: \mathcal{E} \rightarrow \mathcal{E}$ for which there exists a map $T^{*}: \mathcal{E} \rightarrow \mathcal{E}$ such that for all $v, w \in \mathcal{E}$,

$$
(T v, w)=\left(v, T^{*} w\right)
$$

Lemma

Every adjointable operator is a bounded, linear map of A-modules.

Adjointable operators

Let \mathcal{E} be a Hilbert A-module.

Definition

An adjointable operator on \mathcal{E} is a map $T: \mathcal{E} \rightarrow \mathcal{E}$ for which there exists a map $T^{*}: \mathcal{E} \rightarrow \mathcal{E}$ such that for all $v, w \in \mathcal{E}$,

$$
(T v, w)=\left(v, T^{*} w\right)
$$

Lemma

Every adjointable operator is a bounded, linear map of A-modules.

Lemma

The adjointable operators on a \mathcal{E} form a C^{*}-algebra with respect to the operator norm.

This C^{*}-algebra is denoted by $\mathcal{L}(\mathcal{E})$.

Example of a non-adjointable bounded module endomorphism

This example is due to Paschke.
Let $A=C([0,1])$ and $J=\{f \in A ; f(0)=0\}$. Consider the Hilbert A-module $\mathcal{E}:=J \times A$, with inner product

$$
\left(\left(f_{1}, g_{1}\right),\left(f_{1}, g_{2}\right)\right)=\bar{f}_{1} f_{2}+\bar{g}_{1} g_{2}
$$

for $f_{1}, f_{2} \in J$ and $g_{1}, g_{2} \in A$.

Example of a non-adjointable bounded module endomorphism

This example is due to Paschke.
Let $A=C([0,1])$ and $J=\{f \in A ; f(0)=0\}$. Consider the Hilbert A-module $\mathcal{E}:=J \times A$, with inner product

$$
\left(\left(f_{1}, g_{1}\right),\left(f_{1}, g_{2}\right)\right)=\bar{f}_{1} f_{2}+\bar{g}_{1} g_{2}
$$

for $f_{1}, f_{2} \in J$ and $g_{1}, g_{2} \in A$.
Define $T: \mathcal{E} \rightarrow \mathcal{E}$ by

$$
T(f, g)=(0, f)
$$

for $f \in J, g \in A$. Then T is a bounded module map, but not adjointable.

Example: compact operators?

The compact operators should be the ones that are 'almost finite-rank'.

Example

Let X be a compact Hausdorff space, and consider $C(X)$ as a Hilbert $C(X)$-module. Let $M_{f}: C(X) \rightarrow C(X)$ be given by multiplication by a nonzero $f \in C(X)$.

- $C(X)$ is a one-dimensional module over itself, so M_{f} 'should be' finite-rank
- but M_{f} is not compact in the Banach space sense.

Compact operators

Let \mathcal{E} be a Hilbert A-module.

Definition

- The space $\mathcal{F}(\mathcal{E})$ of finite-rank operators on \mathcal{E} is spanned by operators of the form $\theta_{v, w}: \mathcal{E} \rightarrow \mathcal{E}$, for $v, w \in \mathcal{E}$, defined by

$$
\theta_{v, w}(u)=v(w, u)
$$

- The space $\mathcal{K}(\mathcal{E})$ of compact operators on \mathcal{E} is the closure of $\mathcal{F}(\mathcal{E})$ in $\mathcal{L}(\mathcal{E})$.

Compact operators

Let \mathcal{E} be a Hilbert A-module.

Definition

- The space $\mathcal{F}(\mathcal{E})$ of finite-rank operators on \mathcal{E} is spanned by operators of the form $\theta_{v, w}: \mathcal{E} \rightarrow \mathcal{E}$, for $v, w \in \mathcal{E}$, defined by

$$
\theta_{v, w}(u)=v(w, u) .
$$

- The space $\mathcal{K}(\mathcal{E})$ of compact operators on \mathcal{E} is the closure of $\mathcal{F}(\mathcal{E})$ in $\mathcal{L}(\mathcal{E})$.

Lemma

The space $\mathcal{K}(\mathcal{E})$ is a closed $*$-ideal in $\mathcal{L}(\mathcal{E})$.

Example 1: Hilbert spaces

If \mathcal{E} is a Hilbert \mathbb{C}-module (a Hilbert space), then

- the adjointable operators on \mathcal{E} are exactly the bounded ones
- the compact operators on \mathcal{E} are the compact operators in the usual sense.

Example 2: A over itself

For the Hilbert A-module A,

- $\mathcal{L}(A)=\mathcal{M}(A)$, the multiplier algebra of A
- $\mathcal{K}(A)=A$, via left multiplication.

Example 3: A^{n}

For the Hilbert A-module A^{n},

- $\mathcal{L}(A)=M_{n}(\mathcal{M}(A))$
- $\mathcal{K}(A)=M_{n}(A)$.

Example 4: \mathcal{H}_{A}

We write \mathcal{K} for the C^{*}-algebra of compact operators on an infinite-dimensional separable Hilbert space.

For the Hilbert A-module \mathcal{H}_{A},

- $\mathcal{L}\left(\mathcal{H}_{A}\right)=\mathcal{M}(A \otimes \mathcal{K})$, the multiplier algebra of $A \otimes \mathcal{K}$
- $\mathcal{K}\left(\mathcal{H}_{A}\right)=A \otimes \mathcal{K}$.

Fredholm operators

Definition

An operator $F \in \mathcal{L}(\mathcal{E})$ is A-Fredholm if it is invertible modulo $\mathcal{K}(\mathcal{E})$.

Theorem (Mingo, 1987)
Suppose that $1 \in A$. Let F be an A-Fredholm operator on a Hilbert A-module \mathcal{E}. Then there is a compact operator $K \in \mathcal{K}(\mathcal{E})$ such that the operator

$$
F^{\prime}:=(F+K) \oplus 1 \quad \in \mathcal{L}\left(\mathcal{E} \oplus \mathcal{H}_{A}\right)
$$

has closed range, and the A-modules $\operatorname{ker} F^{\prime}$ and $\operatorname{ker} F^{\prime *}$ are finitely generated and projective.
(Kasparov's stabilisation theorem: if \mathcal{E} is separable, then $\mathcal{E} \oplus \mathcal{H}_{A} \cong \mathcal{H}_{A}$.)

Example: proper actions

Consider a locally compact group G acting properly an isometrically on a Riemannian manifold M, and let $E \rightarrow M$ be a Hermitian G-vector bundle. Let \mathcal{E} be the Hilbert $C^{*}(G)$-module defined by completing $\Gamma_{C}(E)$ in the inner product

$$
\left(s_{1}, s_{2}\right)(g)=\left(s_{1}, g \cdot s_{2}\right)_{L^{2}(E)} .
$$

Example: proper actions

Consider a locally compact group G acting properly an isometrically on a Riemannian manifold M, and let $E \rightarrow M$ be a Hermitian G-vector bundle. Let \mathcal{E} be the Hilbert $C^{*}(G)$-module defined by completing $\Gamma_{C}(E)$ in the inner product

$$
\left(s_{1}, s_{2}\right)(g)=\left(s_{1}, g \cdot s_{2}\right)_{L^{2}(E)} .
$$

Let D be a first-order, elliptic, self-adjoint differential operator on E. Set

$$
\tilde{F}:=\frac{D}{\sqrt{D^{2}+1}}
$$

This operator does not preserve $\Gamma_{c}(E)$.

Example: proper actions (cont'd)

We had

$$
\tilde{F}:=\frac{D}{\sqrt{D^{2}+1}} .
$$

Now suppose that M / G is compact. Let $\chi \in C_{c}(M)$ be such that for all $m \in M$,

$$
\int_{G} \chi(g m)^{2} d g=1
$$

Example: proper actions (cont'd)

We had

$$
\tilde{F}:=\frac{D}{\sqrt{D^{2}+1}}
$$

Now suppose that M / G is compact. Let $\chi \in C_{c}(M)$ be such that for all $m \in M$,

$$
\int_{G} \chi(g m)^{2} d g=1
$$

Proposition

The operator

$$
F=\int_{G} g \chi \tilde{F} \chi g^{-1} d g
$$

preserves $\Gamma_{c}(E)$, and extends to a $C^{*}(G)$-Fredholm operator on \mathcal{E}.
The operators F and \tilde{F} are homotopic in a suitable sense.

Unbounded operators

On a Hilbert C^{*}-module, we have notions of (densely defined) unbounded operators and their adjoints.

Unbounded operators

On a Hilbert C^{*}-module, we have notions of (densely defined) unbounded operators and their adjoints.

Definition

An unbounded operator T on a Hilbert C^{*}-module \mathcal{E} is regular if

- $\operatorname{dom}\left(T^{*}\right) \subset \mathcal{E}$ is dense
- $\operatorname{im}\left(1+T^{*} T\right) \subset \mathcal{E}$ is dense.

Example
 If $A=\mathbb{C}$, then every closed operator is regular.

Unbounded operators

On a Hilbert C^{*}-module, we have notions of (densely defined) unbounded operators and their adjoints.

Definition

An unbounded operator T on a Hilbert C^{*}-module \mathcal{E} is regular if

- $\operatorname{dom}\left(T^{*}\right) \subset \mathcal{E}$ is dense
- $\operatorname{im}\left(1+T^{*} T\right) \subset \mathcal{E}$ is dense.

Example

If $A=\mathbb{C}$, then every closed operator is regular.

$$
\begin{aligned}
& \text { Proposition (Baaj-Julg, 1983) } \\
& \text { If } T \text { is regular, then } \frac{T}{\sqrt{T^{*} T+1}} \text { is adjointable. }
\end{aligned}
$$

More generally, there is a notion of functional calculus of regular self-adjoint operators.

III Bimodules and tensor products

Bimodules

Let A and B be C^{*}-algebras.

Definition

A Hilbert (A, B)-bimodule is a Hilbert B-module \mathcal{E} together with a *-homomorphism $A \rightarrow \mathcal{L}(\mathcal{E})$.

In particular, a Hilbert (A, B)-bimodule is a left A-module and a right B-module.

Bimodules

Let A and B be C^{*}-algebras.

Definition

A Hilbert (A, B)-bimodule is a Hilbert B-module \mathcal{E} together with a *-homomorphism $A \rightarrow \mathcal{L}(\mathcal{E})$.

In particular, a Hilbert (A, B)-bimodule is a left A-module and a right B-module.

- A Hilbert (\mathbb{C}, B)-bimodule is a Hilbert B-module.
- A Hilbert (A, \mathbb{C})-bimodule is a $*$-representation of A.

Tensor products

Let

- A, B and C be C^{*}-algebras
- \mathcal{E} be a Hilbert (A, B)-bimodule, and \mathcal{F} a Hilbert (B, C)-bimodule
- $(-,-)_{\mathcal{E}}$ be the B-valued inner product on \mathcal{E}, and $(-,-)_{\mathcal{F}}$ the \mathcal{C}-valued inner product on \mathcal{F}.

Tensor products

Let

- A, B and C be C^{*}-algebras
- \mathcal{E} be a Hilbert (A, B)-bimodule, and \mathcal{F} a Hilbert (B, C)-bimodule
- $(-,-)_{\mathcal{E}}$ be the B-valued inner product on \mathcal{E}, and $(-,-)_{\mathcal{F}}$ the \mathcal{C}-valued inner product on \mathcal{F}.
Consider the algebraic tensor product $\mathcal{E} \otimes \mathcal{F}$ over \mathbb{C}. For $v_{1}, v_{2} \in \mathcal{E}$ and $w_{1}, w_{2} \in \mathcal{F}$, define

$$
\begin{equation*}
\left(v_{1} \otimes w_{1}, v_{2} \otimes w_{2}\right)=\left(w_{1},\left(v_{1}, v_{2}\right)_{\mathcal{E}} w_{2}\right)_{\mathcal{F}} \quad \in C \tag{1}
\end{equation*}
$$

In the second entry, we used the left B-module structure on \mathcal{F}.

Tensor products

Let

- A, B and C be C^{*}-algebras
- \mathcal{E} be a Hilbert (A, B)-bimodule, and \mathcal{F} a $\operatorname{Hilbert}(B, C)$-bimodule
- $(-,-)_{\mathcal{E}}$ be the B-valued inner product on \mathcal{E}, and $(-,-)_{\mathcal{F}}$ the C-valued inner product on \mathcal{F}.

Consider the algebraic tensor product $\mathcal{E} \otimes \mathcal{F}$ over \mathbb{C}. For $v_{1}, v_{2} \in \mathcal{E}$ and $w_{1}, w_{2} \in \mathcal{F}$, define

$$
\begin{equation*}
\left(v_{1} \otimes w_{1}, v_{2} \otimes w_{2}\right)=\left(w_{1},\left(v_{1}, v_{2}\right)_{\mathcal{E}} w_{2}\right)_{\mathcal{F}} \quad \in C \tag{1}
\end{equation*}
$$

In the second entry, we used the left B-module structure on \mathcal{F}.

Definition

The tensor product of \mathcal{E} and \mathcal{F} over B is the completion of $\mathcal{E} \otimes \mathcal{F}$ modulo the vectors of norm 0 in the inner product (1). It is denoted by

$$
\mathcal{E} \otimes_{B} \mathcal{F} .
$$

This tensor product is a Hilbert (A, C)-bimodule.

Tensor products (cont'd)

For all $v \in \mathcal{E}, w \in \mathcal{F}$ and $b \in B$,

$$
\langle v b \otimes w-v \otimes b w, v b \otimes w-v \otimes b w\rangle=0
$$

Hence elements of the form $v b \otimes w-v \otimes b w$ are divided out in the definition of $\mathcal{E} \otimes_{B} \mathcal{F}$.

Example 1: pullbacks of vector bundles

Let $f: X \rightarrow Y$ be a continuous map between compact Hausdorff spaces.
Let $E \rightarrow Y$ be a complex vector bundle. Then

- $\Gamma(E)$ is a Hilbert $C(Y)$-module, i.e. a Hilbert $(\mathbb{C}, C(Y))$-bimodule
- $C(X)$ is a Hilbert $C(X)$-module, and the pullback

$$
f^{*}: C(Y) \rightarrow C(X) \rightarrow \mathcal{L}(C(X))
$$

makes $C(X)$ a Hilbert $(C(Y), C(X)$)-bimodule.

Example 1: pullbacks of vector bundles

Let $f: X \rightarrow Y$ be a continuous map between compact Hausdorff spaces.
Let $E \rightarrow Y$ be a complex vector bundle. Then

- $\Gamma(E)$ is a Hilbert $C(Y)$-module, i.e. a Hilbert $(\mathbb{C}, C(Y))$-bimodule
- $C(X)$ is a Hilbert $C(X)$-module, and the pullback

$$
f^{*}: C(Y) \rightarrow C(X) \rightarrow \mathcal{L}(C(X))
$$

makes $C(X)$ a Hilbert $(C(Y), C(X)$)-bimodule.
Now

$$
\Gamma(E) \otimes_{C(Y)} C(X)=\Gamma\left(f^{*} E\right)
$$

a Hilbert $C(X)$-module.

Example 2: Rieffel induction

This example is due to Rieffel.
Let G be a locally compact group, and $H<G$ a closed subgroup. Fix left Haar measures, and let δ_{G} and δ_{H} be the modular functions of G and H, respectively.

Example 2: Rieffel induction

This example is due to Rieffel.
Let G be a locally compact group, and $H<G$ a closed subgroup. Fix left Haar measures, and let δ_{G} and δ_{H} be the modular functions of G and H, respectively.

Consider the right action by $C_{c}(H)$ on $C_{c}(G)$ given by

$$
\left(f_{G} f_{H}\right)(g)=\int_{H} \frac{\delta_{G}(h)^{1 / 2}}{\delta_{H}(h)^{1 / 2}} f_{G}\left(g h^{-1}\right) f_{H}(h) d h .
$$

Consider the $C_{c}(H)$-valued inner product on $C_{c}(G)$ given by

$$
\left(f_{1}, f_{2}\right)(h)=\frac{\delta_{G}(h)^{1 / 2}}{\delta_{H}(h)^{1 / 2}} \int_{G} \bar{f}_{1}\left(g^{-1}\right) f_{2}\left(g^{-1} h\right) d g
$$

This makes $C_{c}(G)$ a pre-Hilbert $C_{c}(H)$-module. Let \mathcal{E}_{H}^{G} be its completion to a Hilbert $C^{*}(H)$-module.

Example 2: Rieffel induction (cont'd)

The Hilbert $C^{*}(H)$-module \mathcal{E}_{H}^{G} has a left action by $C^{*}(G)$ that extends the left convolution action by $C_{c}(G)$ on itself. This makes \mathcal{E}_{H}^{G} a Hilbert $\left(C^{*}(G), C^{*}(H)\right)$-bimodule.

Example 2: Rieffel induction (cont'd)

The Hilbert $C^{*}(H)$-module \mathcal{E}_{H}^{G} has a left action by $C^{*}(G)$ that extends the left convolution action by $C_{c}(G)$ on itself. This makes \mathcal{E}_{H}^{G} a Hilbert $\left(C^{*}(G), C^{*}(H)\right)$-bimodule.

In this way, every $*$-representation V of $C^{*}(H)$ gives an induced *-representation

$$
\mathcal{E}_{H}^{G} \otimes_{C^{*}(H)} V
$$

of $C^{*}(G)$.
Theorem (Rieffel, 1974)
This implements Mackey induction.

Parabolic induction: a modular function

The following construction is due to Pierre Clare.
Let G be a connected, linear, real semisimple Lie group, and $P<G$ a cuspidal parabolic subgroup, with Langlands decomposition $P=M A N$. Set $L=M A$.

Parabolic induction: a modular function

The following construction is due to Pierre Clare.
Let G be a connected, linear, real semisimple Lie group, and $P<G$ a cuspidal parabolic subgroup, with Langlands decomposition $P=M A N$. Set $L=M A$.

Fix left Haar measures $d g$ on G, and $d n$ on N. Let $d(g N)$ be the G-invariant measure on G / N such that for all $f \in C_{c}(G)$,

$$
\int_{G / N} \int_{N} f(g n) d n d(g N)=\int_{G} f(g) d g
$$

Let $\delta: L \rightarrow \mathbb{R}_{+}$be such that for all $f \in C_{c}(G / N)$ and $I \in L$,

$$
\int_{G / N} f(g / N) d(g N)=\delta(I)^{-1} \int_{G / N} f(g N) d(g N)
$$

Then $\delta(I)=|\operatorname{det}(\operatorname{Ad}(I): \mathfrak{n} \rightarrow \mathfrak{n})|=e^{2 \rho(\log a)}$ if $I=m a \in L$.

Parabolic induction: a Hilbert $C^{*}(L)$-module

Consider the right action by $C_{c}^{\infty}(L)$ on $C_{c}^{\infty}(G / N)$ given by

$$
\left(f_{G / N} f_{L}\right)(g N)=\int_{L} \delta(I)^{1 / 2} f_{G / N}(g / N) f_{L}\left(I^{-1}\right) d l
$$

Parabolic induction: a Hilbert $C^{*}(L)$-module

Consider the right action by $C_{c}^{\infty}(L)$ on $C_{c}^{\infty}(G / N)$ given by

$$
\left(f_{G / N} f_{L}\right)(g N)=\int_{L} \delta(I)^{1 / 2} f_{G / N}(g / N) f_{L}\left(I^{-1}\right) d l
$$

For $f_{1}, f_{2} \in C_{c}^{\infty}(G / N)$, define $\left(f_{1}, f_{2}\right) \in C_{c}^{\infty}(L)$ by

$$
\left(f_{1}, f_{2}\right)(I)=\delta(I)^{1 / 2} \int_{G / N} \bar{f}_{1}(g N) f_{2}(g / N) d(g N)
$$

Parabolic induction: a Hilbert $C^{*}(L)$-module

Consider the right action by $C_{c}^{\infty}(L)$ on $C_{c}^{\infty}(G / N)$ given by

$$
\left(f_{G / N} f_{L}\right)(g N)=\int_{L} \delta(I)^{1 / 2} f_{G / N}(g / N) f_{L}\left(I^{-1}\right) d l
$$

For $f_{1}, f_{2} \in C_{c}^{\infty}(G / N)$, define $\left(f_{1}, f_{2}\right) \in C_{c}^{\infty}(L)$ by

$$
\left(f_{1}, f_{2}\right)(I)=\delta(I)^{1 / 2} \int_{G / N} \bar{f}_{1}(g N) f_{2}(g / N) d(g N)
$$

Definition

The Hilbert $C^{*}(L)$-module $C^{*}(G / N)$ is the completion of the pre-Hilbert $C_{c}^{\infty}(L)$-module $C_{c}^{\infty}(G / N)$.

Parabolic induction: action by $C^{*}(G)$

For $f_{G} \in C_{c}^{\infty}(G), f_{G / N} \in C_{c}^{\infty}(G / N)$ and $g \in G$, define

$$
\left(f_{G} f_{G / N}\right)(g N)=\int_{G} f_{G}\left(g^{\prime}\right) f_{G / N}\left(g^{\prime-1} g N\right) d g^{\prime}
$$

This extends to a *-homomorphism $C^{*}(G) \rightarrow \mathcal{L}\left(C^{*}(G / N)\right)$.

Parabolic induction: action by $C^{*}(G)$

For $f_{G} \in C_{c}^{\infty}(G), f_{G / N} \in C_{c}^{\infty}(G / N)$ and $g \in G$, define

$$
\left(f_{G} f_{G / N}\right)(g N)=\int_{G} f_{G}\left(g^{\prime}\right) f_{G / N}\left(g^{\prime-1} g N\right) d g^{\prime}
$$

This extends to a *-homomorphism $C^{*}(G) \rightarrow \mathcal{L}\left(C^{*}(G / N)\right)$.
In this way, $C^{*}(G / N)$ becomes a Hilbert $\left(C^{*}(G), C^{*}(L)\right)$-bimodule.

Parabolic induction as a tensor product

Consider a unitary irreducible representation π of L on a Hilbert space H. Then π defines a *-representation

$$
\pi: C^{*}(L) \rightarrow \mathcal{L}(H)
$$

by continuous extension of

$$
\pi(f)=\int_{L} f(I) \pi(I) d l
$$

Parabolic induction as a tensor product

Consider a unitary irreducible representation π of L on a Hilbert space H. Then π defines a $*$-representation

$$
\pi: C^{*}(L) \rightarrow \mathcal{L}(H)
$$

by continuous extension of

$$
\pi(f)=\int_{L} f(I) \pi(I) d l
$$

Theorem (Clare, 2013)
The tensor product

$$
C^{*}(G / N) \otimes_{C^{*}(L)} H
$$

is the induced representation $\operatorname{Ind}_{P}^{G}(\pi)$, viewed as a $*$-representation of $C^{*}(G)$.

Morita equivalence

Let A and B be C^{*}-algebras.

Definition

The algebra A is strongly Morita equivalent to B if there is a Hilbert (A, B)-bimodule \mathcal{E} such that

- $\operatorname{span}\{(v, w) ; v, w \in \mathcal{E}\}$ is dense in B
- $\mathcal{K}(\mathcal{E}) \cong A$.

Morita equivalence

Let A and B be C^{*}-algebras.

Definition

The algebra A is strongly Morita equivalent to B if there is a Hilbert (A, B)-bimodule \mathcal{E} such that

- $\operatorname{span}\{(v, w) ; v, w \in \mathcal{E}\}$ is dense in B
- $\mathcal{K}(\mathcal{E}) \cong A$.

Proposition (Rieffel, 1974)

Morita equivalence is an equivalence relation on C^{*}-algebras.

Stable isomorphism

Example

We view \mathcal{H}_{A} as an $(A \otimes \mathcal{K}, A)$-bimodule. Then

- $\operatorname{span}\left\{(v, w) ; v, w \in \mathcal{H}_{A}\right\}$ contains $\operatorname{span}\left\{a^{*} b ; a, b \in A\right\}$ and is dense in A
- $\mathcal{K}\left(\mathcal{H}_{A}\right)=A \otimes \mathcal{K}$.

So $A \otimes \mathcal{K}$ is strongly Morita equivalent to A.

Stable isomorphism

Example

We view \mathcal{H}_{A} as an $(A \otimes \mathcal{K}, A)$-bimodule. Then

- $\operatorname{span}\left\{(v, w) ; v, w \in \mathcal{H}_{A}\right\}$ contains $\operatorname{span}\left\{a^{*} b ; a, b \in A\right\}$ and is dense in A
- $\mathcal{K}\left(\mathcal{H}_{A}\right)=A \otimes \mathcal{K}$.

So $A \otimes \mathcal{K}$ is strongly Morita equivalent to A.

Theorem (Brown, 1977)

- If $A \otimes \mathcal{K} \cong B \otimes \mathcal{K}$, then A and B are strongly Morita equivalent.
- If A and B are strongly Morita equivalent and have countable approximate units, then $A \otimes \mathcal{K} \cong B \otimes \mathcal{K}$.

Morita equivalence and representations

Definition

A Hermitian A-module is a $*$-representation $\pi: A \rightarrow \mathcal{B}(H)$ in a Hilbert space H, such that

$$
\{\pi(a) v ; a \in A, v \in H\} \subset H
$$

is dense. The category of such modules and bounded module homomorphisms is denoted by $\operatorname{HMod}(A)$.

Morita equivalence and representations

Definition

A Hermitian A-module is a $*$-representation $\pi: A \rightarrow \mathcal{B}(H)$ in a Hilbert space H, such that

$$
\{\pi(a) v ; a \in A, v \in H\} \subset H
$$

is dense. The category of such modules and bounded module homomorphisms is denoted by $\operatorname{HMod}(A)$.

Theorem (Rieffel)

If A and B are strongly Morita equivalent, then tensoring with the corresponding bimodules defines an equivalence of categories between $\operatorname{HMod}(A)$ and $\operatorname{HMod}(B)$.

More information

General background:

- E. Christopher Lance, Hilbert C*-modules: a toolkit for operator algebraists, Cambridge University Press, 1995.

Relations to $K(K)$-theory:

- Bruce Blackadar, K-theory for operator algebras, second edition, Cambridge University Press, 1998.
- Nigel Higson, A primer on KK-theory, Proc. Sympos. Pure Math., 51, Part 1, AMS, 1990.
- N.E. Wegge-Olsen, K-theory and C*-algebras, Oxford Science Publications, 1993.

Thank you

