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C*-algebras

A C ∗-algebras is a Banachalgebra with involution a 7→ a∗ such that

‖a∗a‖ = ‖a‖2 ∀a ∈ A.

Examples

• Let X a locally compact Hausdorff space

C0(X ) = {f : X → C : f continuous, f (∞) = 0}

‖f ‖∞ = sup
x∈X
‖f (x)‖ and f ∗ := f̄

• Let H be a Hilbert space

B(H) := {T : H → H : ‖T‖op <∞} 〈T ξ, η〉 = 〈ξ,T ∗η〉

‖T‖op := sup
‖ξ‖≤1

‖T ξ‖.



The first Gelfand-Naimark theorem

Theorem (Gelfand-Naimark 1943)

Every commutative C ∗-algebra is (isometrically) ∗-isomorphic to
C0(X ) for some locally compact Hausdorff space X .

Idea of Proof Define

X = Â := {χ : A→ C : 0 6= χ an algebra homom.}.

Â is locally closed (=open in its closure) in B1(A′), hence locally
compact by Banach-Alaoglu (compact iff A is unital).
Then A ∼= C0(Â) via

̂ : A→ C0(Â); a 7→ â, with â(χ) := χ(a).

Philosophy: View noncommutative C*-algebras as
‘noncommutative topological spaces’.



2nd Gelfand-Naimark theorem

Theorem (Gelfand-Naimark 1943)

Every C ∗-algebra is (isometrically) ∗-isomorphic to a closed
∗-subalgebra of B(H) for some H.

Idea of Proof Consider the state space of A:

S(A) := {ϕ : A→ C : ϕ linear;ϕ(a∗a) ≥ 0 ∀a ∈ A, ‖ϕ‖ = 1}.

Then ∀a ∈ A ∃ϕ ∈ S(A) such that ϕ(a∗a) > 0. Define ∀a, b ∈ A:

〈a, b〉ϕ := ϕ(a∗b), Nϕ = {a : 〈a, a〉ϕ = 0}, Hϕ := A/Nϕ
〈,·,·〉ϕ

and
πϕ : A→ B(Hϕ); πϕ(a)(b + Nϕ) := ab + Nϕ

Then we get a faithful representation

π :=
⊕

ϕ∈S(A)

πϕ : A→ B
(⊕

ϕ

Hϕ
)



Unitizations: The Stone Čech compactification
Problem: A may not be unital (e.g. A = C0(X ), X not. cpct.).

Define M(A) to be the set of all maps m : A→ A such that

∃m∗ : A→ A satisfying ∀a, b ∈ A : am(b) = (m∗(a∗))∗b.

One checks that m(a)b = m(ab) ∀a, b ∈ A and m,m∗ are
bounded. M(A) becomes a unital C ∗-algebra with respect to

mn := m ◦ n, m 7→ m∗, and ‖m‖ := ‖m‖op.

Moreover: A C M(A) via a 7→ (b 7→ ab) and then ma = m(a).

M(A) is the largest unital C ∗-algebra which contains A as an
essential ideal, that is m = 0⇔ ma = 0 ∀a ∈ A.

Universal property
If A C M then ∃ ι : M → M(A); ι(m)(a) := ma,
which is faithful if A C M essential

Definition We call M(A) the multiplier algebra of A.



Unitizations: The Stone Čech compactification

Examples

1. We have M(C0(X )) ∼= Cb(X ) ∼= C (β(X )).

2. If A is unital, then M(A) = A (since m = m(1) ∈ A).

3. If H is a Hilbert space, then M(K(H)) = B(H).

4. If π : A ↪→ B(H) is a nondegenerate (i.e. π(A)H = H) and
faithful ∗-representation, then

M(A) ∼= {T ∈ B(H) : Tπ(A) ∪ π(A)T ⊆ π(A)}.

Some facts: (a) M(A) is the strict completion of A with strict
topology generated by the seminorms m 7→ ‖m(a)‖, ‖m∗(a)‖.

(b) If Φ : A→ M(B) is a nondeg. ∗-hom. (i.e., Φ(A)B = B),

∃! Φ̄ : M(A)→ M(B) s.t. Φ̄(m)(Φ(a)b) := Φ(ma)b.

Φ̄ is strictly continuous, and faithful iff Φ is faithful.



The one point compactification and functional calculus

Define A+ := A + C1 ⊆ M(A) (the smallest unitization of A)

Then C0(X )+ = C (X+) with X+ := X ∪ {∞}.

For a ∈ A define σ(a) := {λ ∈ C : a + λ1 not invertible in A+}.

If a ∈ A is normal, i.e. a∗a = aa∗ then C ∗(a, 1) ⊆ A+ is
commutative, and

Ĉ ∗(a, 1) ∼= σ(a) via χ 7→ χ(a)

The inverse of the Gelfand map C ∗(a, 1) ∼= C (Ĉ ∗(a, 1)) gives an
isometric ∗-homomorphism

Φ : C (σ(a)) = C (Ĉ ∗(a, 1))→ C ∗(a, 1) : f 7→ f (a)

One checks that f (a) ∈ C ∗(a) ⊆ A if f (0) = 0!

Important: This is the main tool for many constructions in
C ∗-theory (square roots, approximate units, positivity, etc..)



The maximal tensor product
Let A,B be C ∗-algebras, A� B the algebraic tensor product with
multiplication and involution

(a1 ⊗ b1) · (a2 ⊗ b2) = a1a2 ⊗ b1b2 and (a⊗ b)∗ = a∗ ⊗ b∗.

If π : A→ M(C ), ρ : B → M(C ) s.t. π(a)ρ(b) = ρ(b)π(a) ∀a, b.
Then there exists a ∗-homom.

π × ρ : A� B → M(C );
∑

ai ⊗ bi 7→
∑

π(ai )ρ(bi )

For x ∈ A� B define

‖x‖max := sup
π×ρ
‖π × ρ(x)‖ and A⊗max B := A� B

‖·‖max
.

By construction, every π × ρ extends uniquely to A⊗max B!

Conversely: let iA, iB : (A,B) ↪→ M(A⊗max B) given by

iA(a)(a′ ⊗ b′) = aa′ ⊗ b and iB(b)(a′ ⊗ b′) = a⊗ bb′.

If Φ : A⊗max B → M(C ) any nondeg. ∗-homomorphism, then

Φ = π × ρ with π := Φ̄ ◦ iA, ρ := Φ̄ ◦ iB .



The minimal tensor product
Let π : A→ B(H), ρ : B → B(K ) be faithful ∗-representations.

π ⊗ ρ : A� B → B(H⊗̂K ); π ⊗ ρ(a⊗ b)(ξ ⊗ η) = π(a)ξ ⊗ ρ(b)η.

Takesaki ’64 The Norm ‖x‖min := ‖π ⊗ ρ(x)‖ does not depend on
the choices π and ρ and it is the smallest C ∗-cross norm on A�B.

A⊗min B = A� B
‖·‖min is called the minimal tensor product.

Definition
A C ∗-algeba A is called nuclear if ∀B : A⊗max B = A⊗min B.

Examples

(a) C0(X ) is nuclear with C0(X )⊗ B = C0(X ,B) and
C0(X )⊗ C0(Y ) = C0(X × Y ).

(b) K(H), type I C ∗-algebras, C ∗(G ) if G connected or amenable
are nuclear.

(c) The following are not nuclear: B(H), C ∗(F2), C ∗(Γ)
for Γ discrete non-amenable!



(twisted) Group C*-algebras

Let G be a locally compact group, and ω : G × G → T a Borel
2-cocycle, i.e. ω is a Borel map such that ∀s, t ∈ G :

ω(s, t)ω(st, r) = ω(s, tr)ω(t, r) and ω(s, e) = 1 = ω(e, s)

Let L1(G , ω) := L1(G ) equipped with

f ∗ωg(s) =

∫
G
f (t)g(s−1t)ω(t, t−1s) dt, f ∗(s) = ∆(s−1)ω(s, s−1)f (s−1).

An ω-representation is a strictly Borel map V : G → UM(B), s.t.

VsVt = ω(s, t)Vst .

It integrates to Ṽ : L1(G , ω)→ M(B); Ṽ (f ) =
∫
G f (t)Vt dt.

Define C ∗(G , ω) := L1(G , ω)
‖·‖max

, ‖f ‖max = supV ‖Ṽ (f )‖.



(twisted) Group C ∗ algebras
Observation: there is canonical ω-representation

iG : G → UM(C ∗(G , ω)), (iG (s)(f ))(t) = ω(s, s−1t)f (s−1t).

Then: If Φ : C ∗(G , ω)→ M(B) is a nondeg. ∗-representation we
get

Φ = Ṽ for V = Φ ◦ iG .
We therefore get a one-to-one correspondence between nondeg
∗-reps of C ∗(G , ω) and ω-unitary reps of G !

Note: If B = K(H), then M(B) = B(H) and UM(B) = U(H)
Hence this correspondence covers representations on Hilbert spaces
and it preserves irreducibilty and unitary equivalence in both
directions!

If ω ≡ 1 we get the maximal (or full) group C ∗-algebra C ∗(G ),
which is universal for unitary representations U : G → UM(B)
(strictly cont. homomorphisms). We also get a one-to-one
correspondence

Ĝ ←→ Ĉ ∗(G ).



Examples

1. Each ω ∈ Z 2(Z,T) is equivalent to one of

ωΘ(n,m) = e2πi〈Θn,m〉, Θ ∈ Mn(R) s.t. Θt = −Θ.

Then C ∗(Zn, ωΘ) is an n-dimensional non-commutative torus

C ∗(Zn, ωΘ) = C ∗(u1, . . . , un : ui unitary uiuj = e2πiΘijujui )

Note: If ω ≡ 1 we get C ∗(Zn) ∼= C (Tn).

2. G = Rn we have ω ∼ ωΘ as above and

C ∗(Rn, ωΘ) ∼= C0(Rk)⊗K(L2(Rm))

for some k ,m with Rk the radical of Θ, k + 2m = n.

If Θ is totally skew (i.e. k = 0): C ∗(Rn, ωΘ) = K(L2(Rm))



reduced (twisted) Group C ∗-algebras

Definition Let (G , ω) be given. Then

λω : G → U(L2(G )); (λω(s)ξ)(t) := ω(s, s−1t)ξ(s−1t).

is called the left ω-regular representation of G . We call

C ∗r (G , ω) := λω(C ∗(G , ω)) ⊆ B(L2(G ))

the reduced ω-twisted group C ∗-algebra of G .

Note: If G amenable, then λω : C ∗(G , ω)
∼=→ C ∗r (G , ω).

If ω ≡ 1 we have C ∗(G ) = C ∗r (G ) ⇐⇒ G amenable.



C*-dynamical systems
Let Aut(A) denote the group of ∗-automorphism of A. An action

α : G → Aut(A); s 7→ αs

is a group homom such that s 7→ αs(a) is continuous ∀a ∈ A.

Examples

(1) If G y X ; (s, x) 7→ sx is an action of G on X , then

τ : G → Aut(C0(X )); (τs(f ))(x) := f (s−1x).

is a corresponding action on C0(X ).

(2) Let N be a closed normal subgroup of G . Then there exists a
decomposition action

α : G → Aut(C ∗(N)); (αs(f ))(n) = δ(s)f (s−1ns), f ∈ L1(N)

with δ(s) = ∆G (s)∆G/N(s−1).



Crossed products
Let α : G → Aut(A) be an action. Let

Cc(G ,A) := {f : G → A : f cont. with supp(f ) compact}

equipped with convolution and involution

f ∗ g(s) =

∫
G
f (s)αs(g(s−1t)) ds f ∗(s) = ∆(s−1)αs(f (s−1))∗.

A covariant representation (π,U) : (A,G )→ M(B) consists of a
∗-rep π : A→ M(B) and a unitary rep. U : G → UM(B) such that

∀a ∈ A, s ∈ G : π(αs(a)) = Usπ(a)U∗s .

Then (π,U) integrates to

π × U : Cc(G ,A)→ M(B); π × U(f ) =

∫
G
π(f (s)Us ds

Define

Aoα G := Cc(G ,A)
‖·‖max

with ‖f ‖max := sup
(π,U)

‖π × U(f )‖.



Crossed products

Recall: The full (or maximal) crossed product Aoα G is defined as

Aoα G := Cc(G ,A)
‖·‖max

with ‖f ‖max := sup
(π,U)

‖π × U(f )‖.

Then by construction, every covariant rep (π,U) integrates to

π o U : Aoα G → M(B).

Conversely, ∃(iA, iG ) : (A,G )→ M(Aoα G ) given by

(iA(a)f )(s) := af (s) (iG (s)f )(t) := αs(f (s−1t)), f ∈ Cc(G ,A)

If Φ : Aoα G → M(B) is any nondeg. ∗-homomorphism, then

Φ = π o U with π = Φ̄ ◦ iA, U = Φ̄ ◦ iG .



Reduced crossed product
The regular representation is the integrated form

Λ := ΛA o ΛG : Aoα G → M(A⊗K(L2(G )))

with (ΛA,ΛG ) defined by ΛG = 1A ⊗ λG and

ΛA : A
α̃→ M(A⊗ C0(G ))

idA⊗M→ M(A⊗K(L2(G )))

with α̃(a) ∈ Cb(G ,A) ⊆ M(A⊗ C0(G )); α̃(a)(s) = αs−1(a))

We define the reduced crossed product

Aored G := Λ(Aoα G ) ⊆ M(A⊗K(L2(G ))).

If π : A→ B(H) is faithful, then we get a faithful representation

Indπ : Aored G ⊆ M(A⊗K(L2(G )))
π⊗idK−→ B(H⊗̂L2(G )).

Alternatively: Indπ = π̃ o (1⊗ λG ) with

(π̃(a)ξ)(s) := π(αs−1(a))ξ(s) ξ ∈ L2(G ,H) ∼= H⊗̂L2(G ).



Crossed products

Some facts

1. If B is any C ∗-algebra, then

(Aoα G )⊗max B ∼= (A⊗max B) oα⊗idB
G

and (Aored G )⊗min B ∼= (A⊗min B) oα⊗id,red G

2. If G amenable, then Aoα G = Aored G .

3. G amenable and A nuclear =⇒ Aoα G is nuclear, since

(Aoα G )⊗max B ∼= (A⊗max B) oα⊗id G
∼= (A⊗min B) oα⊗id G ∼= (A⊗min B) ored G
∼= (Aored G )⊗min B ∼= (Aoα G )⊗min B.



Other constructions

One can attach C ∗-algebras to all kind of mathematical objects,
such as

1. groupoids and groupoid actions.

2. partial actions.

3. semigroups and rings

4. graphs and higher rank graphs.

5. coarse metric spaces.

6. ....

and the structure of the algebras reflects the structure of the
mathematical objects.



Dual spaces and the Fell topology
Let Rep(A) := {π : A→ B(Hπ) : ∗-rep}/ ∼ and

Â := {π ∈ Rep(A) : π irreducible}.

If G is a loc cpct group: Rep(G )↔ Rep(C ∗(G )) and Ĝ ↔ Ĉ ∗(G )

Definition If π ∈ Rep(A) and E ⊆ Rep(A) we define

π ≺ E ⇐⇒ ker π ⊇
⋂
ρ∈E

ker ρ.

We then say π is weakly contained in E . Restricted to Â we get

π ∈ Ē ⇔ π ≺ E .

Similarly, in Prim(A) := {ker π : π ∈ Â} we have the closure
operation

P ∈ E ⇔ P ⊇
⋂
Q∈E

Q.

These topologies often have very poor separation properties, very
often Â is not even T0! But Prim(A) is always T0!



Fell-topology

For π ∈ Rep(A) nongeg. (resp. π ∈ Rep(G )) and ξ ∈ Hπ with
‖ξ‖ = 1 let

ϕπ,ξ(a) = 〈ξ, π(a)ξ〉 (resp. ϕπ,ξ(g) = 〈ξ, π(g)ξ〉).

be a state (resp. positive definite funct) associated to π. Then

Theorem (Fell 1960’s) The following are equivalent:

1. π ≺ E

2. Every state associated to π is a weak*-limit of states
associated to E .

If π is irreducible, these are equivalent to

3. ∃ a state associated to π which is a weak*-limit of states
associated to E .

If A = C ∗(G ), then states can be replaced by positive definite
functions and weak*-convergence by uniform convergence on
compact subsets of G .



Fell-topology

Suppose I C A is a closed ideal. Then if π ∈ Â we get either

π|I ∈ Î or π(I ) = {0}

In the latter case π ∈ Â/I and Â = Î ∪̇Â/I .

Similarly Prim(A) = Prim(I )∪̇Prim(A/I ).

The sets Î (resp. Â/I ) are the open (resp. closed) subsets of Â
and similar relations hold for Prim(A)!

Recall that a set E is called locally closed if E is open in its
closure!

Important fact: E ⊂ Prim(A) is locally closed if and only if there
exist closed ideals I ⊆ J ⊆ A such that E = Prim(J/I ).



Simple C ∗-algebras
Definition A C ∗-algebra is called simple if {0} and A are the only
closed ideals in A.

If all points P ∈ Prim(A) are locally closed, then each point
determines a simple subquotient J/I of A s.t. {P} = Prim(J/I ).

The simple C ∗-algebras can be viewed as the building blocks of
general C ∗-algebras! (Elliott classification programme!)

Examples

1. Mn(C) and K(H) are simple.

2. Let Θ ∈ Mn(R) with Θt = −Θ. Then C ∗(Zn, ωΘ) is simple if
Θ is totally skew:

∀k ∈ Zn :
(
∀m ∈ Zn : 〈k ,Θm〉 = 0

)
⇒ k = 0.

3. If G y X free and minimal, then C0(X ) ored G is simple.

Theorem (Lüdeking-Poguntke ’94) The simple subquotients of
C ∗(G ) for a connected G are K(H) or K(H)⊗ C ∗(Zn, ωΘ).



Type I C ∗-algebras
Definition A C ∗-algebra A is called type I (or GCR, or postliminal)
if

∀ π ∈ Â : π(A) ⊆ K(Hπ) 6= ∅.

And A is called CCR (or liminal) if ∀ π ∈ Â : π(A) = K(Hπ).

Theorem (Glimm) The following are equivalent (for A separable)

1. A is type I.

2. the map ker : Â→ Prim(A); π 7→ ker π is a bijection.

3. Â is a T0-space.

4. Â is almost Hausdorff (every nonempty closed set contains a
dense open Hausdorff subset).

Examples The following groups have type I group algebras:

1. Motion groups, connected nilpotent groups.

2. reductive groups over local fields (Harish Chandra, Bernstein)

3. real (locally) algebraic groups (Dixmier, Pukanszky).

4. algebraic groups over Qp (Bekka-E ’21)



Continuous-trace C ∗-algebras
Definition A is called a continuous-trace C ∗-algebra, if Â is
Hausdorff, and

∀π ∈ Â ∃π ∈ U ⊆ Â and p ∈ A such that ∀ρ ∈ U : ρ(p) is a
rank-one projection.

Dixmier-Douady Let A be a separable and continuous trace with
X := Â. Then there exists a locally trivial bundle p : X → X with
fibres p−1(x) = K(Hx) for all x ∈ X such that

A⊗K(`2) ∼= Γ0(X ,X )

Then: the stable continuous trace algebras with fixed spectrum
X = Â are classified by

Ȟ1(X ,PU) ∼= Ȟ2(X ,T) ∼= Ȟ3(X ,Z).

Theorem (Dixmier) For every type I C ∗-algebra A there is an
ascending series of closed ideals (Iν) over the ordinal numbers ν
s.t. Iν+1/Iν is continuous trace for all ν and A = Iν0 for some ν0.
.
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Thanks for your attention!


