A quick introduction to C*-algebras

Siegfried Echterhoff

WWU Münster

AIM-RTNG Language School May 21, 2021

Content

- 1. The Gelfand Naimark Theorems
 - Gelfand-Naimark 1: Commutative C*-algebras
 - Gelfand-Naimark 2: The GNS-Construction
- 2. Unitizations of C*-algebras
 - The 'one-point-compactification'
 - The 'Stone-Čech compactification'
- 3. Tensor products
- 4. Some examples
 - (twisted) group C*-algebras
 - crossed products
- 5. The Fell topology
- 6. Type I C*-algebras and continuous trace C*-algebras

C*-algebras

A C*-algebras is a Banachalgebra with involution $a \mapsto a^*$ such that

$$\|a^*a\| = \|a\|^2 \quad \forall a \in A.$$

Examples

• Let X a locally compact Hausdorff space

$$C_0(X) = \{f : X o \mathbb{C} : f \text{ continuous}, \ f(\infty) = 0\}$$

 $\|f\|_{\infty} = \sup_{x \in X} \|f(x)\| \text{ and } f^* := \overline{f}$

• Let *H* be a Hilbert space

$$\mathcal{B}(H) := \{T : H \to H : ||T||_{op} < \infty\} \quad \langle T\xi, \eta \rangle = \langle \xi, T^* \eta \rangle$$
$$||T||_{op} := \sup_{\|\xi\| \le 1} ||T\xi||.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The first Gelfand-Naimark theorem

Theorem (Gelfand-Naimark 1943)

Every commutative C^* -algebra is (isometrically) *-isomorphic to $C_0(X)$ for some locally compact Hausdorff space X.

Idea of Proof Define

$$X = \widehat{A} := \{\chi : A \to \mathbb{C} : 0 \neq \chi \text{ an algebra homom.} \}.$$

 \widehat{A} is locally closed (=open in its closure) in $B_1(A')$, hence locally compact by Banach-Alaoglu (compact iff A is unital). Then $A \cong C_0(\widehat{A})$ via

$$\widehat{}: {\mathcal A} o {\mathcal C}_0(\widehat{{\mathcal A}});$$
 a $\mapsto \widehat{a}, \,\, {
m with} \,\,\, \widehat{a}(\chi):=\chi(a).$

(日) (日) (日) (日) (日) (日) (日) (日)

Philosophy: View noncommutative C*-algebras as 'noncommutative topological spaces'.

2nd Gelfand-Naimark theorem

Theorem (Gelfand-Naimark 1943) Every C*-algebra is (isometrically) *-isomorphic to a closed *-subalgebra of $\mathcal{B}(H)$ for some H.

Idea of Proof Consider the state space of A:

$$S(A) := \{ \varphi : A \to \mathbb{C} : \varphi \text{ linear}; \varphi(a^*a) \ge 0 \ \forall a \in A, \|\varphi\| = 1 \}.$$

Then $\forall a \in A \ \exists \varphi \in S(A)$ such that $\varphi(a^*a) > 0$. Define $\forall a, b \in A$:

$$\langle a,b
angle_{arphi}:=arphi(a^*b),\quad N_{arphi}=\{a:\langle a,a
angle_{arphi}=0\},\quad H_{arphi}:=\overline{A/N_{arphi}}^{\langle,\cdot,\cdot
angle_{arphi}}$$

and

$$\pi_{arphi}: \mathcal{A}
ightarrow \mathcal{B}(\mathcal{H}_{arphi}); \quad \pi_{arphi}(a)(b+\mathcal{N}_{arphi}):= ab+\mathcal{N}_{arphi}$$

Then we get a faithful representation

$$\pi := \bigoplus_{\varphi \in \mathcal{S}(\mathcal{A})} \pi_{\varphi} : \mathcal{A} \to \mathcal{B}\big(\bigoplus_{\varphi} \mathcal{H}_{\varphi}\big)$$

Unitizations: The Stone Čech compactification Problem: A may not be unital (e.g. $A = C_0(X)$, X not. cpct.). Define M(A) to be the set of all maps $m : A \rightarrow A$ such that

 $\exists m^*: A \to A \quad \text{satisfying} \quad \forall a, b \in A: am(b) = (m^*(a^*))^*b.$

One checks that $m(a)b = m(ab) \forall a, b \in A$ and m, m^* are bounded. M(A) becomes a unital C^* -algebra with respect to

$$mn := m \circ n, \quad m \mapsto m^*, \quad \text{and} \quad \|m\| := \|m\|_{op}.$$

Moreover: $A \lhd M(A)$ via $a \mapsto (b \mapsto ab)$ and then ma = m(a).

M(A) is the largest unital C*-algebra which contains A as an essential ideal, that is $m = 0 \Leftrightarrow ma = 0 \quad \forall a \in A$.

Universal property

If $A \lhd M$ then $\exists \iota : M \rightarrow M(A); \iota(m)(a) := ma$, which is faithful if $A \lhd M$ essential

Definition We call M(A) the multiplier algebra of A_{A} , $A_{$

Unitizations: The Stone Čech compactification

Examples

- 1. We have $M(C_0(X)) \cong C_b(X) \cong C(\beta(X))$.
- 2. If A is unital, then M(A) = A (since $m = m(1) \in A$).
- 3. If H is a Hilbert space, then $M(\mathcal{K}(H)) = \mathcal{B}(H)$.
- 4. If $\pi : A \hookrightarrow \mathcal{B}(H)$ is a nondegenerate (i.e. $\pi(A)H = H$) and faithful *-representation, then

$$M(A) \cong \{T \in \mathcal{B}(H) : T\pi(A) \cup \pi(A)T \subseteq \pi(A)\}.$$

Some facts: (a) M(A) is the strict completion of A with strict topology generated by the seminorms $m \mapsto ||m(a)||, ||m^*(a)||$.

(b) If $\Phi : A \to M(B)$ is a nondeg. *-hom. (i.e., $\Phi(A)B = B$),

$$\exists! \ \bar{\Phi}: M(A) \to M(B) \quad ext{s.t.} \quad \bar{\Phi}(m)(\Phi(a)b) := \Phi(ma)b.$$

 $\bar{\Phi}$ is strictly continuous, and faithful iff Φ is faithful.

The one point compactification and functional calculus Define $A^+ := A + \mathbb{C}1 \subseteq M(A)$ (the smallest unitization of A) Then $C_0(X)^+ = C(X^+)$ with $X^+ := X \cup \{\infty\}$. For $a \in A$ define $\sigma(a) := \{\lambda \in \mathbb{C} : a + \lambda 1 \text{ not invertible in } A^+\}$. If $a \in A$ is normal, i.e. $a^*a = aa^*$ then $C^*(a, 1) \subseteq A^+$ is commutative and

commutative, and

$$\widehat{\mathcal{C}^*(a,1)} \cong \sigma(a)$$
 via $\chi \mapsto \chi(a)$

The inverse of the Gelfand map $C^*(a, 1) \cong C(C^*(a, 1))$ gives an isometric *-homomorphism

$$\Phi: \mathit{C}(\sigma({\it a})) = \mathit{C}(\widehat{\mathit{C^*}({\it a},1)})
ightarrow \mathit{C^*}({\it a},1): f \mapsto f({\it a})$$

One checks that $f(a) \in C^*(a) \subseteq A$ if f(0) = 0!

Important: This is the main tool for many constructions in C^* -theory (square roots, approximate units, positivity, etc..)

The maximal tensor product

Let A, B be C^{*}-algebras, $A \odot B$ the algebraic tensor product with multiplication and involution

$$(a_1\otimes b_1)\cdot(a_2\otimes b_2)=a_1a_2\otimes b_1b_2$$
 and $(a\otimes b)^*=a^*\otimes b^*$.

If $\pi : A \to M(C), \rho : B \to M(C)$ s.t. $\pi(a)\rho(b) = \rho(b)\pi(a) \ \forall a, b$. Then there exists a *-homom.

$$\pi imes
ho : A \odot B o M(C); \sum \mathsf{a}_i \otimes b_i \mapsto \sum \pi(\mathsf{a}_i)
ho(b_i)$$

For $x \in A \odot B$ define

 $\|x\|_{\max} := \sup \|\pi \times \rho(x)\|$ and $A \otimes_{\max} B := \overline{A \odot B}^{\|\cdot\|_{\max}}$. $\pi \times \rho$

By construction, every $\pi \times \rho$ extends uniquely to $A \otimes_{\max} B!$ **Conversely**: let $i_A, i_B : (A, B) \hookrightarrow M(A \otimes_{\max} B)$ given by $i_A(a)(a' \otimes b') = aa' \otimes b$ and $i_B(b)(a' \otimes b') = a \otimes bb'$. If $\Phi : A \otimes_{\max} B \to M(C)$ any nondeg. *-homomorphism, then $\Phi = \pi \times \rho$ with $\pi := \bar{\Phi} \circ i_A, \ \rho := \bar{\Phi} \circ i_B.$

The minimal tensor product

Let $\pi : A \to \mathcal{B}(H), \rho : B \to \mathcal{B}(K)$ be faithful *-representations.

 $\pi \otimes \rho : A \odot B \to \mathcal{B}(H \hat{\otimes} K); \ \pi \otimes \rho(a \otimes b)(\xi \otimes \eta) = \pi(a)\xi \otimes \rho(b)\eta.$

Takesaki '64 The Norm $||x||_{\min} := ||\pi \otimes \rho(x)||$ does not depend on the choices π and ρ and it is the smallest C^* -cross norm on $A \odot B$.

 $A \otimes_{\min} B = \overline{A \odot B}^{\|\cdot\|_{\min}}$ is called the minimal tensor product.

Definition

A C^{*}-algeba A is called nuclear if $\forall B : A \otimes_{\max} B = A \otimes_{\min} B$.

Examples

(a) $C_0(X)$ is nuclear with $C_0(X) \otimes B = C_0(X, B)$ and $C_0(X) \otimes C_0(Y) = C_0(X \times Y)$.

(b) $\mathcal{K}(H)$, type I C*-algebras, $C^*(G)$ if G connected or amenable are nuclear.

(c) The following are not nuclear: $\mathcal{B}(H)$, $C^*(\mathbb{F}_2)$, $C^*(\Gamma)$ for Γ discrete non-amenable!

(twisted) Group C*-algebras

Let G be a locally compact group, and $\omega : G \times G \to \mathbb{T}$ a Borel 2-cocycle, i.e. ω is a Borel map such that $\forall s, t \in G$:

$$\omega(s,t)\omega(st,r) = \omega(s,tr)\omega(t,r)$$
 and $\omega(s,e) = 1 = \omega(e,s)$

Let $L^1(G,\omega) := L^1(G)$ equipped with

$$f*_{\omega}g(s) = \int_{\mathcal{G}} f(t)g(s^{-1}t)\omega(t,t^{-1}s) dt, \ f^*(s) = \Delta(s^{-1})\overline{\omega(s,s^{-1})f(s^{-1})}$$

An ω -representation is a strictly Borel map $V: G \to UM(B)$, s.t.

$$V_s V_t = \omega(s,t) V_{st}.$$

It integrates to $\tilde{V} : L^1(G, \omega) \to M(B)$; $\tilde{V}(f) = \int_G f(t)V_t dt$. Define $C^*(G, \omega) := \overline{L^1(G, \omega)}^{\|\cdot\|_{\max}}$, $\|f\|_{\max} = \sup_V \|\tilde{V}(f)\|$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

(twisted) Group C^* algebras

Observation: there is canonical ω -representation

 $i_G : G \to UM(C^*(G, \omega)), \quad (i_G(s)(f))(t) = \omega(s, s^{-1}t)f(s^{-1}t).$ Then: If $\Phi : C^*(G, \omega) \to M(B)$ is a nondeg. *-representation we get

$$\Phi = ilde{V}$$
 for $V = \Phi \circ i_G$.

We therefore get a one-to-one correspondence between nondeg *-reps of $C^*(G, \omega)$ and ω -unitary reps of G!

Note: If $B = \mathcal{K}(H)$, then $M(B) = \mathcal{B}(H)$ and $UM(B) = \mathcal{U}(H)$ Hence this correspondence covers representations on Hilbert spaces and it preserves irreducibility and unitary equivalence in both directions!

If $\omega \equiv 1$ we get the maximal (or full) group C^* -algebra $C^*(G)$, which is universal for unitary representations $U: G \to UM(B)$ (strictly cont. homomorphisms). We also get a one-to-one correspondence

Examples

1. Each $\omega \in Z^2(\mathbb{Z},\mathbb{T})$ is equivalent to one of

$$\omega_{\Theta}(n,m)=e^{2\pi i \langle \Theta n,m
angle}, \quad \Theta\in M_n(\mathbb{R}) ext{ s.t. } \Theta^t=-\Theta_t$$

Then $C^*(\mathbb{Z}^n, \omega_{\Theta})$ is an *n*-dimensional non-commutative torus

$$C^*(\mathbb{Z}^n,\omega_{\Theta}) = C^*(u_1,\ldots,u_n:u_i \text{ unitary } u_iu_j = e^{2\pi i\Theta_{ij}}u_ju_i)$$

Note: If $\omega \equiv 1$ we get $C^*(\mathbb{Z}^n) \cong C(\mathbb{T}^n)$. 2. $G = \mathbb{R}^n$ we have $\omega \sim \omega_{\Theta}$ as above and

$$C^*(\mathbb{R}^n,\omega_{\Theta})\cong C_0(\mathbb{R}^k)\otimes \mathcal{K}(L^2(\mathbb{R}^m))$$

for some k, m with \mathbb{R}^k the radical of Θ , k + 2m = n.

If Θ is totally skew (i.e. k = 0): $C^*(\mathbb{R}^n, \omega_{\Theta}) = \mathcal{K}(L^2(\mathbb{R}^m))$

reduced (twisted) Group C^* -algebras

Definition Let (G, ω) be given. Then

$$\lambda_\omega: \mathcal{G}
ightarrow \mathcal{U}(L^2(\mathcal{G})); \quad (\lambda_\omega(s)\xi)(t):=\omega(s,s^{-1}t)\xi(s^{-1}t).$$

is called the left ω -regular representation of G. We call

$$C^*_r(G,\omega) := \lambda_\omega(C^*(G,\omega)) \subseteq \mathcal{B}(L^2(G))$$

the reduced ω -twisted group C^* -algebra of G.

Note: If G amenable, then $\lambda_{\omega} : C^*(G, \omega) \xrightarrow{\cong} C^*_r(G, \omega)$. If $\omega \equiv 1$ we have $C^*(G) = C^*_r(G) \iff G$ amenable.

C*-dynamical systems

Let Aut(A) denote the group of *-automorphism of A. An action

$$\alpha: G \to \operatorname{Aut}(A); s \mapsto \alpha_s$$

is a group homom such that $s \mapsto \alpha_s(a)$ is continuous $\forall a \in A$. Examples (1) If $G \curvearrowright X$; $(s, x) \mapsto sx$ is an action of G on X, then

$$\tau: G \to \operatorname{Aut}(C_0(X)); (\tau_s(f))(x) := f(s^{-1}x).$$

is a corresponding action on $C_0(X)$.

(2) Let N be a closed normal subgroup of G. Then there exists a decomposition action

$$\alpha: G \to \operatorname{Aut}(C^*(N)); \quad (\alpha_s(f))(n) = \delta(s)f(s^{-1}ns), \quad f \in L^1(N)$$

with $\delta(s) = \Delta_G(s) \Delta_{G/N}(s^{-1})$.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → 目 → のへぐ

Crossed products

Let $\alpha : G \to \operatorname{Aut}(A)$ be an action. Let

 $C_c(G, A) := \{f : G \to A : f \text{ cont. with } supp(f) \text{ compact}\}$

equipped with convolution and involution

$$f * g(s) = \int_{G} f(s) \alpha_{s}(g(s^{-1}t)) ds \quad f^{*}(s) = \Delta(s^{-1}) \alpha_{s}(f(s^{-1}))^{*}.$$

A covariant representation $(\pi, U) : (A, G) \to M(B)$ consists of a *-rep $\pi : A \to M(B)$ and a unitary rep. $U : G \to UM(B)$ such that

$$\forall a \in A, s \in G : \pi(\alpha_s(a)) = U_s \pi(a) U_s^*.$$

Then (π, U) integrates to

$$\pi \times U : C_c(G, A) \to M(B); \quad \pi \times U(f) = \int_G \pi(f(s)U_s \, ds)$$

Define

$$A \rtimes_{\alpha} G := \overline{C_c(G,A)}^{\|\cdot\|_{\max}} \quad \text{with} \quad \|f\|_{\max} := \sup_{\substack{(\pi,U) \\ \langle \pi, V \rangle \\ \langle \pi, V \rangle }} \|\pi \times U(f)\|.$$

Crossed products

Recall: The full (or maximal) crossed product $A \rtimes_{\alpha} G$ is defined as

$$A
times_{lpha}G:=\overline{\mathcal{C}_{c}(G,A)}^{\|\cdot\|_{\max}} \quad ext{with} \quad \|f\|_{\max}:=\sup_{(\pi,U)}\|\pi imes U(f)\|.$$

Then by construction, every covariant rep (π, U) integrates to

$$\pi \rtimes U : A \rtimes_{\alpha} G \to M(B).$$

Conversely, $\exists (i_A, i_G) : (A, G) \rightarrow M(A \rtimes_{\alpha} G)$ given by

 $(i_A(a)f)(s) := af(s) \quad (i_G(s)f)(t) := \alpha_s(f(s^{-1}t)), \quad f \in C_c(G,A)$

If $\Phi: A \rtimes_{\alpha} G \to M(B)$ is any nondeg. *-homomorphism, then

$$\Phi = \pi \rtimes U$$
 with $\pi = \overline{\Phi} \circ i_A$, $U = \overline{\Phi} \circ i_G$.

Reduced crossed product

The regular representation is the integrated form

$$\Lambda := \Lambda_A \rtimes \Lambda_G : A \rtimes_\alpha G \to M(A \otimes \mathcal{K}(L^2(G)))$$

with (Λ_A, Λ_G) defined by $\Lambda_G = 1_A \otimes \lambda_G$ and

$$\Lambda_{A}: A \stackrel{\tilde{\alpha}}{\to} M(A \otimes C_{0}(G)) \stackrel{\mathrm{id}_{A} \otimes M}{\to} M(A \otimes \mathcal{K}(L^{2}(G)))$$

with $\tilde{\alpha}(a) \in C_b(G, A) \subseteq M(A \otimes C_0(G)); \quad \tilde{\alpha}(a)(s) = \alpha_{s^{-1}}(a))$ We define the reduced crossed product

$$A \rtimes_{\mathsf{red}} G := \Lambda(A \rtimes_{\alpha} G) \subseteq M(A \otimes \mathcal{K}(L^2(G))).$$

If $\pi: A \to \mathcal{B}(H)$ is faithful, then we get a faithful representation

$$\operatorname{Ind} \pi : A \rtimes_{\operatorname{red}} G \subseteq M(A \otimes \mathcal{K}(L^2(G))) \stackrel{\pi \otimes \operatorname{id}_{\mathcal{K}}}{\longrightarrow} \mathcal{B}(H \hat{\otimes} L^2(G)).$$

Alternatively: Ind $\pi = \tilde{\pi} \rtimes (1 \otimes \lambda_{\mathcal{G}})$ with

$$(\tilde{\pi}(a)\xi)(s) := \pi(\alpha_{s^{-1}}(a))\xi(s) \quad \xi \in L^2(G,H) \cong H \hat{\otimes} L^2(G).$$

900

э.

Crossed products

Some facts 1. If B is any C^* -algebra, then $(A \rtimes_{\alpha} G) \otimes_{\max} B \cong (A \otimes_{\max} B) \rtimes_{\alpha \otimes \mathsf{id}_{B}} G$ $(A \rtimes_{\mathsf{red}} G) \otimes_{\mathsf{min}} B \cong (A \otimes_{\mathsf{min}} B) \rtimes_{\alpha \otimes \mathsf{id},\mathsf{red}} G$ and 2. If G amenable, then $A \rtimes_{\alpha} G = A \rtimes_{\mathsf{red}} G$. 3. *G* amenable and *A* nuclear $\implies A \rtimes_{\alpha} G$ is nuclear, since $(A \land C) \land P \sim (A \land P) \land \dots$ \sim

$$(A \rtimes_{\alpha} G) \otimes_{\max} B = (A \otimes_{\max} B) \rtimes_{\alpha \otimes id} G$$
$$\cong (A \otimes_{\min} B) \rtimes_{\alpha \otimes id} G \cong (A \otimes_{\min} B) \rtimes_{red} G$$
$$\cong (A \rtimes_{red} G) \otimes_{\min} B \cong (A \rtimes_{\alpha} G) \otimes_{\min} B.$$

Other constructions

One can attach C^* -algebras to all kind of mathematical objects, such as

- 1. groupoids and groupoid actions.
- 2. partial actions.
- 3. semigroups and rings
- 4. graphs and higher rank graphs.
- 5. coarse metric spaces.

6.

and the structure of the algebras reflects the structure of the mathematical objects.

Dual spaces and the Fell topology Let $\operatorname{Rep}(A) := \{\pi : A \to \mathcal{B}(H_{\pi}) : *\operatorname{-rep}\}/\sim \text{and}$ $\widehat{A} := \{\pi \in \operatorname{Rep}(A) : \pi \text{ irreducible}\}.$

If G is a loc cpct group: $\operatorname{Rep}(G) \leftrightarrow \operatorname{Rep}(C^*(G))$ and $\widehat{G} \leftrightarrow \widehat{C^*(G)}$ Definition If $\pi \in \operatorname{Rep}(A)$ and $E \subseteq \operatorname{Rep}(A)$ we define

$$\pi \prec E \iff \ker \pi \supseteq \bigcap_{\rho \in E} \ker \rho.$$

We then say π is weakly contained in *E*. Restricted to \widehat{A} we get

$$\pi\in\bar{E}\Leftrightarrow\pi\prec E.$$

Similarly, in $Prim(A) := \{ \ker \pi : \pi \in \widehat{A} \}$ we have the closure operation

$$P\in \overline{E}\Leftrightarrow P\supseteq \bigcap_{Q\in E}Q.$$

These topologies often have very poor separation properties, very often \widehat{A} is not even T_0 ! But Prim(A) is always T_0 !

Fell-topology

For $\pi\in {\rm Rep}(A)$ nongeg. (resp. $\pi\in {\rm Rep}(G)$) and $\xi\in H_\pi$ with $\|\xi\|=1$ let

 $\varphi_{\pi,\xi}(a) = \langle \xi, \pi(a) \xi \rangle \quad (\text{resp. } \varphi_{\pi,\xi}(g) = \langle \xi, \pi(g) \xi \rangle).$

be a state (resp. positive definite funct) associated to π . Then Theorem (Fell 1960's) The following are equivalent:

1.
$$\pi \prec E$$

- 2. Every state associated to π is a weak*-limit of states associated to E.
- If π is irreducible, these are equivalent to
 - 3. \exists a state associated to π which is a weak*-limit of states associated to *E*.

If $A = C^*(G)$, then states can be replaced by positive definite functions and weak*-convergence by uniform convergence on compact subsets of G.

Fell-topology

Suppose $I \lhd A$ is a closed ideal. Then if $\pi \in \widehat{A}$ we get either

$$\pi|_I \in \widehat{I}$$
 or $\pi(I) = \{0\}$

In the latter case $\pi \in \widehat{A/I}$ and $\widehat{A} = \widehat{I \cup A/I}$.

Similarly $Prim(A) = Prim(I) \dot{\cup} Prim(A/I).$

The sets \hat{I} (resp. $\widehat{A/I}$) are the open (resp. closed) subsets of \hat{A} and similar relations hold for Prim(A)!

Recall that a set E is called locally closed if E is open in its closure!

Important fact: $E \subset Prim(A)$ is locally closed if and only if there exist closed ideals $I \subseteq J \subseteq A$ such that E = Prim(J/I).

Simple C*-algebras

Definition A C^* -algebra is called simple if $\{0\}$ and A are the only closed ideals in A.

If all points $P \in Prim(A)$ are locally closed, then each point determines a simple subquotient J/I of A s.t. $\{P\} = Prim(J/I)$.

The simple C^* -algebras can be viewed as the building blocks of general C^* -algebras! (Elliott classification programme!)

Examples

- 1. $M_n(\mathbb{C})$ and $\mathcal{K}(H)$ are simple.
- 2. Let $\Theta \in M_n(\mathbb{R})$ with $\Theta^t = -\Theta$. Then $C^*(\mathbb{Z}^n, \omega_{\Theta})$ is simple if Θ is totally skew:

$$\forall k \in \mathbb{Z}^n : \left(\forall m \in \mathbb{Z}^n : \langle k, \Theta m \rangle = 0 \right) \Rightarrow k = 0.$$

3. If $G \curvearrowright X$ free and minimal, then $C_0(X) \rtimes_{\mathsf{red}} G$ is simple.

Theorem (Lüdeking-Poguntke '94) The simple subquotients of $C^*(G)$ for a connected G are $\mathcal{K}(H)$ or $\mathcal{K}(H) \otimes C^*(\mathbb{Z}^n, \omega_{\Theta})$, where $\mathcal{K}(H) \otimes \mathcal{K}(H) \otimes \mathcal{K}(H) \otimes \mathcal{K}(H) \otimes \mathcal{K}(H)$

Type I C*-algebras

Definition A C^* -algebra A is called type I (or GCR, or postliminal) if

$$\forall \ \pi \in \widehat{A} : \ \pi(A) \subseteq \mathcal{K}(H_{\pi}) \neq \emptyset.$$

And A is called CCR (or liminal) if $\forall \pi \in \widehat{A}$: $\pi(A) = \mathcal{K}(H_{\pi})$.

Theorem (Glimm) The following are equivalent (for A separable)

- 1. A is type I.
- 2. the map ker : $\widehat{A} \to Prim(A)$; $\pi \mapsto \ker \pi$ is a bijection.
- 3. \widehat{A} is a T_0 -space.
- 4. \widehat{A} is almost Hausdorff (every nonempty closed set contains a dense open Hausdorff subset).

Examples The following groups have type I group algebras:

- 1. Motion groups, connected nilpotent groups.
- 2. reductive groups over local fields (Harish Chandra, Bernstein)
- 3. real (locally) algebraic groups (Dixmier, Pukanszky).
- 4. algebraic groups over \mathbb{Q}_p (Bekka-E '21)

Continuous-trace C^* -algebras

Definition A is called a continuous-trace C^* -algebra, if \widehat{A} is Hausdorff, and

 $\forall \pi \in \widehat{A} \exists \pi \in U \subseteq \widehat{A} \text{ and } p \in A \text{ such that } \forall \rho \in U : \rho(p) \text{ is a rank-one projection.}$

Dixmier-Douady Let A be a separable and continuous trace with $X := \widehat{A}$. Then there exists a locally trivial bundle $p : \mathcal{X} \to X$ with fibres $p^{-1}(x) = \mathcal{K}(H_x)$ for all $x \in X$ such that

$$A\otimes \mathcal{K}(\ell^2)\cong \Gamma_0(X,\mathcal{X})$$

Then: the stable continuous trace algebras with fixed spectrum $X = \widehat{A}$ are classified by

$$\check{H}^1(X,\mathcal{P}U)\cong\check{H}^2(X,\mathbb{T})\cong\check{H}^3(X,\mathbb{Z}).$$

Theorem (Dixmier) For every type I C^* -algebra A there is an ascending series of closed ideals (I_{ν}) over the ordinal numbers ν s.t. $I_{\nu+1}/I_{\nu}$ is continuous trace for all ν and $A = I_{\nu_0}$ for some ν_0 .

Bibliography

ī.

Jacques Dixmier, *C**-algebras, Translated from the French by Francis Jellett, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.

J. Cuntz, S. Echterhoff, X. Li, and G. Yu. *K*-theory for group *C**-algebras and semigroup *C**-algebras, Oberwolfach Seminars, 47, Birkhäuser/Springer, Cham, 2017.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thanks for your attention!