A quick introduction to C*-algebras

Siegfried Echterhoff
WWU Miinster

AIM-RTNG Language School
May 21, 2021



Content

1. The Gelfand Naimark Theorems

» Gelfand-Naimark 1: Commutative C*-algebras
» Gelfand-Naimark 2: The GNS-Construction

2. Unitizations of C*-algebras
> The ‘one—poivnt—compactification’
» The 'Stone-Cech compactification’
3. Tensor products
4. Some examples

> (twisted) group C*-algebras
» crossed products

5. The Fell topology

6. Type | C*-algebras and continuous trace C*-algebras



C*-algebras
A C*-algebras is a Banachalgebra with involution a — a* such that
|a*al| = ||la]|> Va € A.
Examples
e Let X a locally compact Hausdorff space
Co(X) ={f : X — C : f continuous, f(c0) =0}
|flloe = sup ||f(x)|| and f*:=F
xeX
e Let H be a Hilbert space

B(H) :={T:H—=H:|Tlop <oc} (T&n) =(& T

I Tllop := sup [IT¢]-
ll€ll<1



The first Gelfand-Naimark theorem

Theorem (Gelfand-Naimark 1943)

Every commutative C*-algebra is (isometrically) x-isomorphic to
Co(X) for some locally compact Hausdorff space X.

Idea of Proof Define
X=A:== {x:A— C:0+# x an algebra homom.}.

A is locally closed (=open in its closure) in By(A’), hence locally
compact by Banach-Alaoglu (compact iff A is unital).
Then A= Gy(A) via

~

~ A= Go(A);a— 3, with a(x) == x(a).

Philosophy: View noncommutative C*-algebras as
‘noncommutative topological spaces’.



2nd Gelfand-Naimark theorem
Theorem (Gelfand-Naimark 1943)

Every C*-algebra is (isometrically) x-isomorphic to a closed
x-subalgebra of B(H) for some H.

Idea of Proof Consider the state space of A:
S(A):={p: A— C:glinear;p(a*a) > 0Vac A, |p| =1}.
Then Va € A3Jp € S(A) such that ¢(a*a) > 0. Define Va, b € A:

(a,b)p = p(a"b), N,={a:(a,a), =0}, H,:= W<’.7.>w

and
o A= B(Hy); me(a)(b+ Ny) :=ab+ N,
Then we get a faithful representation

=P n:A-B EBH

vES(A)



Unitizations: The Stone Cech compactification
Problem: A may not be unital (e.g. A= Go(X), X not. cpct.).

Define M(A) to be the set of all maps m: A — A such that
dm*: A— A satisfying Va,be€ A:am(b) = (m*(a*))*b.

One checks that m(a)b = m(ab) VYa,b € A and m, m* are
bounded. M(A) becomes a unital C*-algebra with respect to

mn:=mon, m—m", and |m| :=|m|qp.

Moreover: A << M(A) via a+ (b~ ab) and then ma = m(a).

M(A) is the largest unital C*-algebra which contains A as an
essential ideal, thatis m=0&< ma=0 VacA.

Universal property
If A< M then 3¢: M — M(A); (m)(a) := ma,
which is faithful if A <t M essential

Definition We call M(A) the multiplier algebra of A,



Unitizations: The Stone Cech compactification

Examples

1.

We have M(Co(X)) = Co(X) = C(B(X)).

2. If Ais unital, then M(A) = A (since m = m(1) € A).
3.
4. If m: A— B(H) is a nondegenerate (i.e. m(A)H = H) and

If H is a Hilbert space, then M(KC(H)) = B(H).

faithful x-representation, then

M(A) 2 {T € B(H) : Tr(A) Un(A)T C m(A)}.

Some facts: (a) M(A) is the strict completion of A with strict
topology generated by the seminorms m — ||m(a)||, ||m*(a)]|.

(b) If ®: A— M(B) is a nondeg. *-hom. (i.e., (A)B = B),

31 & : M(A) = M(B) st. &(m)(d(a)b) ;= d(ma)b.

b is strictly continuous, and faithful iff ¢ is faithful.



The one point compactification and functional calculus
Define AT := A+ C1 C M(A) (the smallest unitization of A)
Then Go(X)T = C(XT) with XT := X U {cc}.

For a € A define o(a) := {\ € C: a+ Al not invertible in A*}.
If a € Ais normal, i.e. a*a = aa* then C*(a,1) C A" is

commutative, and

o —

C*(a,1) = o(a) via x— x(a)

o —

The inverse of the Gelfand map C*(a,1) = C(C*(a, 1)) gives an
isometric x-homomorphism

—

®: C(o(a)) = C(C*(a 1)) = C*(a,1) : f > (a)

One checks that f(a) € C*(a) C Aif f(0) = 0!

Important: This is the main tool for many constructions in
C*-theory (square roots, approximate units, positivity, etc..)



The maximal tensor product
Let A, B be C*-algebras, A ® B the algebraic tensor product with
multiplication and involution

(31 X bl) . (32 &® bz) =ai1a» @ bib, and (a &® b)* =a"® b*.

fm:A— M(C),p: B— M(C) s.t. m(a)p(b) = p(b)m(a) Va, b.
Then there exists a *-homom.

TXp:AOB — M(C);Zai ® b; — ZW(QI)P(bi)
For x € A® B define
HXHmax = sup Hﬂ. X p(X)H and A Qmax B := A@iBH.”max.
TXpP

By construction, every m X p extends uniquely to A ®max B!
Conversely: let ia, ig : (A, B) =< M(A @max B) given by
ia(a)(@ @ b)=ad @b and ig(b)(d ®b')=axbb.
If ®:A®max B— M(C) any nondeg. *-homomorphism, then
d=7mxp with 7:=dois, p:=doig.



The minimal tensor product
Let 7 : A— B(H),p: B — B(K) be faithful x-representations.
T®p:AGB = B(HEK); m@ p(a® b)(¢®@n) = m(a)é @ p(b)n.

Takesaki '64 The Norm ||x||min := || ® p(x)|| does not depend on
the choices 7 and p and it is the smallest C*-cross norm on A® B.

A®min B=AO Bl is called the minimal tensor product.

Definition
A C*-algeba A is called nuclear if VB : A ®max B = A Qmin B.

Examples

(a) Go(X) is nuclear with Go(X) ® B = Cp(X, B) and

C()(X) ® CO(Y) = Co(X X Y).

(b) KL(H), type | C*-algebras, C*(G) if G connected or amenable
are nuclear.

(c) The following are not nuclear: B(H), C*(F,), C*(T')
for I discrete non-amenable!



(twisted) Group C*-algebras

Let G be a locally compact group, and w: G x G — T a Borel
2-cocycle, i.e. w is a Borel map such that Vs, t € G :

w(s, t)w(st,r) = w(s, tr)w(t,r) and w(s,e)=1=w(e,s)

Let L}(G,w) := L}(G) equipped with

fr,g(s) = / f(t)g(s ) w(t, t7ts) dt, £*(s) = A(s V)w(s,s 1)f(s~1)
G
An w-representation is a strictly Borel map V' : G — UM(B), s.t
VS Vt = W(S7 t) Vst‘

It integrates to V : LY(G,w) — M(B = [ f(t) Ve dt.
Define C*(G,w) := Ll(G,w)|| Hmax, Hmeax = supy, || V(f)].



(twisted) Group C* algebras

Observation: there is canonical w-representation
ic: G — UM(C*(G,w)), (ic(s)(F)(t)=w(s,s 1t)f(s  t).

Then: If ®: C*(G,w) — M(B) is a nondeg. *-representation we
get B
d=V for V=0boig.

We therefore get a one-to-one correspondence between nondeg
«-reps of C*(G,w) and w-unitary reps of G!

Note: If B = K(H), then M(B) = B(H) and UM(B) = U(H)
Hence this correspondence covers representations on Hilbert spaces
and it preserves irreducibilty and unitary equivalence in both
directions!

If w=1 we get the maximal (or full) group C*-algebra C*(G),
which is universal for unitary representations U : G — UM(B)
(strictly cont. homomorphisms). We also get a one-to-one
correspondence

—

G +— C*(G).



Examples

1. Each w € Z?(Z,T) is equivalent to one of
woe(n,m) = e2”i<@”’m>, © € M,(R) s.t. ©f = —O.

Then C*(Z",we) is an n-dimensional non-commutative torus

27i©

CY(Z",we) = C*(u1,...,up: uj unitary uju; = e i ujuj)

Note: If w =1 we get C*(Z") = C(T").

2. G =R" we have w ~ wg as above and
C*(R",we) = Co(R¥) @ K(LA(R™))

for some k, m with R¥ the radical of ©, k 4+ 2m = n.
If © is totally skew (i.e. k =0): C*(R",wg) = K(L(R™))



reduced (twisted) Group C*-algebras

Definition Let (G,w) be given. Then
o1 G = ULRG)); (Mu(8)E)(t) = w(s,s 1t)e(s ).
is called the left w-regular representation of G. We call
C:(6,w) == A(C*(G,w)) € B(LA(G))
the reduced w-twisted group C*-algebra of G.

Note: If G amenable, then A\, : C*(G,w) 5 CHG,w).
If w=1 we have C*(G) = C}(G) <= G amenable.



C*-dynamical systems
Let Aut(A) denote the group of x-automorphism of A. An action

a: G — Aut(A);s — as

is a group homom such that s — as(a) is continuous Va € A.

Examples
(1) If G ~ X; (s,x) — sx is an action of G on X, then

7: G — Aut(Go(X)); (5(F))(x) == F(s71x).

is a corresponding action on Cp(X).

(2) Let N be a closed normal subgroup of G. Then there exists a
decomposition action

a: G — Aut(C*(N)); (as(F))(n) =6(s)f(s tns), f e L(N)

with d(s) = Ag(s)AG/N(s_l).



Crossed products
Let o : G — Aut(A) be an action. Let

C(G,A) :={f: G — A: f cont. with supp(f) compact}

equipped with convolution and involution
f+g(s) =/ f(s)as(g(s ) ds  £(s) = A(s Has(f(s))"
G

A covariant representation (m, U) : (A, G) — M(B) consists of a
*-rep ™ : A— M(B) and a unitary rep. U: G — UM(B) such that

Vac Ase G: w(as(a)) = Usm(a)Us.
Then (m, U) integrates to
mx U: C(G,A) = M(B): = x U(f) = /Gw(f(s)Us ds
Define
A G = C(G, AN ™ with  [[Fllmax := sup |7 x U(F)].

(7



Crossed products

Recall: The full (or maximal) crossed product A x,, G is defined as

Asia G = C(G, A ™ ith [|Fllmax = sup |Im x U(F)].

(m,U)
Then by construction, every covariant rep (, U) integrates to
TxU:Ax, G— M(B).
Conversely, 3(ia,ic) : (A, G) = M(A x, G) given by
(ia(a)f)(s) := af(s) (ig(s)f)(t) = as(f(st)), f e C(G,A)
If ®:Ax,G— M(B)is any nondeg. *-homomorphism, then

d=mxU with t=boiy, U=doic.



Reduced crossed product
The regular representation is the integrated form

A=Ay xAg:Ax, G— MA®K(L*(G)))

with (Aa, Ag) defined by Ag = 14 ® A¢ and
M AL MA® G(G) SV M(A® K(L2(G)))

with é@(a) € Cp(G,A) C M(A® Go(G)); a(a)(s) = as-1(a))
We define the reduced crossed product

AXreq G = NA %, G) C M(A® K(L2(G))).
If 7: A — B(H) is faithful, then we get a faithful representation

Ind7: A xeq G C M(A® K(L2(G))) "2 B(HHL2(G)).

Alternatively: Ind7m =7 x (1 ® Ag) with

(7(2)€)(s) := m(as-1(a))é(s) € € L(G, H) = HOL(G).



Crossed products

Some facts
1. If B is any C*-algebra, then

(A X G) ®max B= (A ®max B) >4a®id5 G
and (A Ared G) Qmin B = (A min B) X a®id,red G
2. If G amenable, then A x, G = A X,eq G.

3. G amenable and A nuclear — A %, G is nuclear, since
(A N G) ®max B= (A ®max B) >qoaX)id G

= (A Rmin B) Haxid G= (A Qmin B) A red G
= (A Xred G) @min B = (A Xqo G) @min B.



Other constructions

One can attach C*-algebras to all kind of mathematical objects,
such as

1. groupoids and groupoid actions.
partial actions.

semigroups and rings

graphs and higher rank graphs.

AR

coarse metric spaces.

©

and the structure of the algebras reflects the structure of the
mathematical objects.



Dual spaces and the Fell topology
Let Rep(A) :={m: A— B(H;) : *-rep}/ ~ and

A= {r € Rep(A) : 7 irreducible}.
If G is a loc cpct group: Rep(G) «» Rep(C*(G)) and G > C/*(\G)
Definition If 7 € Rep(A) and E C Rep(A) we define

T <E<=kerm D ﬂ ker p.
pEE

We then say 7 is weakly contained in E. Restricted to A we get
neE<er<E.

Similarly, in Prim(A) := {kerm : = € A} we have the closure
operation
PcEsPD ()@
QeE
These topologies often have very poor separation properties, very
often A is not even To! But Prim(A) is always Tp!



Fell-topology

For m € Rep(A) nongeg. (resp. m € Rep(G)) and £ € H, with
1€} =1 let

pre(a) = (€ 7m(a)€)  (resp. pre(g) = (£, 7m(8)8)):

be a state (resp. positive definite funct) associated to 7. Then

Theorem (Fell 1960’s) The following are equivalent:
1. < E
2. Every state associated to 7 is a weak*-limit of states
associated to E.
If 7 is irreducible, these are equivalent to

3. 3 a state associated to 7 which is a weak*-limit of states
associated to E.
If A= C*(G), then states can be replaced by positive definite
functions and weak*-convergence by uniform convergence on
compact subsets of G.



Fell-topology

Suppose | <1 A is a closed ideal. Then if T € A we get either
7lyel or w(l)={0}

In the latter case 7 € Z/\I and A= IAUZ/\I
Similarly ~ Prim(A) = Prim(/)U Prim(A/I).

The sets T(resp. Zﬁ) are the open (resp. closed) subsets of A
and similar relations hold for Prim(A)!

Recall that a set E is called locally closed if E is open in its
closure!

Important fact: E C Prim(A) is locally closed if and only if there
exist closed ideals | C J C A such that E = Prim(J//).



Simple C*-algebras
Definition A C*-algebra is called simple if {0} and A are the only
closed ideals in A.

If all points P € Prim(A) are locally closed, then each point
determines a simple subquotient J/I of As.t. {P} = Prim(J/I).

The simple C*-algebras can be viewed as the building blocks of
general C*-algebras! (Elliott classification programme!)
Examples

1. Mp(C) and K(H) are simple.

2. Let © € My(R) with ©f = —©. Then C*(Z",we) is simple if

© is totally skew:
VkeZ": (VmeZ": (k,Om)=0) = k=0.
3. If G ~ X free and minimal, then Co(X) Xeq G is simple.

Theorem (Lideking-Poguntke '94) The simple subquotients of
C*(G) for a connected G are K(H) or K(H) @ C*(Z",we).



Type | C*-algebras

Definition A C*-algebra A is called type | (or GCR, or postliminal)
if
VreA: w(A)CK(Hy) #0.

And A'is called CCR (or liminal) if VreA: =(A)=K(Hy).

Theorem (Glimm) The following are equivalent (for A separable)

[y

. Als type .
the map ker : A — Prim(A); 7+ ker is a bijection.
CAisa To-space.

. A'is almost Hausdorff (every nonempty closed set contains a
dense open Hausdorff subset).

Examples The following groups have type | group algebras:

1. Motion groups, connected nilpotent groups.
reductive groups over local fields (Harish Chandra, Bernstein)
. real (locally) algebraic groups (Dixmier, Pukanszky).

oo

algebraic groups over Q, (Bekka-E '21)



Continuous-trace C*-algebras
Definition A is called a continuous-trace C*-algebra, if A is
Hausdorff, and

VreAdre UgﬁandpeAsuchthatheU:p(p) is a
rank-one projection.

Dixmier-Douady Let A be a separable and continuous trace with
X := A. Then there exists a locally trivial bundle p : X — X with
fibres p~1(x) = K(Hy) for all x € X such that

A® K(0%) = To(X, X)

Then: the stable continuous trace algebras with fixed spectrum
X = A are classified by

HY (X, PU) = H*(X,T) = [3(X, 7).

Theorem (Dixmier) For every type | C*-algebra A there is an
ascending series of closed ideals (/,) over the ordinal numbers v
s.t. I,41/1, is continuous trace for all v and A = I,,, for some .
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Thanks for your attention!



