A quick introduction to C*-algebras

Siegfried Echterhoff

WWU Münster
AIM-RTNG Language School
May 21, 2021

Content

1. The Gelfand Naimark Theorems

- Gelfand-Naimark 1: Commutative C*-algebras
- Gelfand-Naimark 2: The GNS-Construction

2. Unitizations of C^{*}-algebras

- The 'one-point-compactification'
- The 'Stone-Čech compactification'

3. Tensor products
4. Some examples

- (twisted) group C*-algebras
- crossed products

5. The Fell topology
6. Type I C*-algebras and continuous trace C^{*}-algebras

C*-algebras

A C^{*}-algebras is a Banachalgebra with involution $a \mapsto a^{*}$ such that

$$
\left\|a^{*} a\right\|=\|a\|^{2} \quad \forall a \in A
$$

Examples

- Let X a locally compact Hausdorff space

$$
\begin{gathered}
C_{0}(X)=\{f: X \rightarrow \mathbb{C}: f \text { continuous, } f(\infty)=0\} \\
\|f\|_{\infty}=\sup _{x \in X}\|f(x)\| \quad \text { and } \quad f^{*}:=\bar{f}
\end{gathered}
$$

- Let H be a Hilbert space

$$
\begin{gathered}
\mathcal{B}(H):=\left\{T: H \rightarrow H:\|T\|_{o p}<\infty\right\} \quad\langle T \xi, \eta\rangle=\left\langle\xi, T^{*} \eta\right\rangle \\
\|T\|_{o p}:=\sup _{\|\xi\| \leq 1}\|T \xi\| .
\end{gathered}
$$

The first Gelfand-Naimark theorem

Theorem (Gelfand-Naimark 1943)

Every commutative C^{*}-algebra is (isometrically) *-isomorphic to $C_{0}(X)$ for some locally compact Hausdorff space X.

Idea of Proof Define

$$
X=\widehat{A}:=\{\chi: A \rightarrow \mathbb{C}: 0 \neq \chi \text { an algebra homom. }\}
$$

\widehat{A} is locally closed (=open in its closure) in $B_{1}\left(A^{\prime}\right)$, hence locally compact by Banach-Alaoglu (compact iff A is unital). Then $A \cong C_{0}(\widehat{A})$ via

$$
\wedge: A \rightarrow C_{0}(\widehat{A}) ; a \mapsto \widehat{a}, \text { with } \widehat{a}(\chi):=\chi(a)
$$

Philosophy: View noncommutative C^{*}-algebras as 'noncommutative topological spaces'.

2nd Gelfand-Naimark theorem

Theorem (Gelfand-Naimark 1943)
Every C^{*}-algebra is (isometrically) *-isomorphic to a closed *-subalgebra of $\mathcal{B}(H)$ for some H.

Idea of Proof Consider the state space of A :

$$
S(A):=\left\{\varphi: A \rightarrow \mathbb{C}: \varphi \text { linear; } \varphi\left(a^{*} a\right) \geq 0 \forall a \in A,\|\varphi\|=1\right\} .
$$

Then $\forall a \in A \exists \varphi \in S(A)$ such that $\varphi\left(a^{*} a\right)>0$. Define $\forall a, b \in A$:

$$
\langle a, b\rangle_{\varphi}:=\varphi\left(a^{*} b\right), \quad N_{\varphi}=\left\{a:\langle a, a\rangle_{\varphi}=0\right\}, \quad H_{\varphi}:={\overline{A / N_{\varphi}}}_{\langle\cdot, \cdot\rangle_{\varphi}}
$$

and

$$
\pi_{\varphi}: A \rightarrow \mathcal{B}\left(H_{\varphi}\right) ; \quad \pi_{\varphi}(a)\left(b+N_{\varphi}\right):=a b+N_{\varphi}
$$

Then we get a faithful representation

$$
\pi:=\bigoplus_{\varphi \in S(A)} \pi_{\varphi}: A \rightarrow \mathcal{B}\left(\bigoplus_{\varphi} H_{\varphi}\right)
$$

Unitizations: The Stone Čech compactification

Problem: A may not be unital (e.g. $A=C_{0}(X), X$ not. cpct.).
Define $M(A)$ to be the set of all maps $m: A \rightarrow A$ such that

$$
\exists m^{*}: A \rightarrow A \text { satisfying } \quad \forall a, b \in A: a m(b)=\left(m^{*}\left(a^{*}\right)\right)^{*} b
$$

One checks that $m(a) b=m(a b) \forall a, b \in A$ and m, m^{*} are bounded. $M(A)$ becomes a unital C^{*}-algebra with respect to

$$
m n:=m \circ n, \quad m \mapsto m^{*}, \quad \text { and } \quad\|m\|:=\|m\|_{o p}
$$

Moreover: $A \triangleleft M(A)$ via $a \mapsto(b \mapsto a b)$ and then $m a=m(a)$.
$M(A)$ is the largest unital C^{*}-algebra which contains A as an essential ideal, that is $\quad m=0 \Leftrightarrow m a=0 \quad \forall a \in A$.

Universal property
If $A \triangleleft M$ then $\exists \iota: M \rightarrow M(A) ; \iota(m)(a):=m a$,
which is faithful if $A \triangleleft M$ essential
Definition We call $M(A)$ the multiplier algebra of A,

Unitizations: The Stone Čech compactification

Examples

1. We have $M\left(C_{0}(X)\right) \cong C_{b}(X) \cong C(\beta(X))$.
2. If A is unital, then $M(A)=A$ (since $m=m(1) \in A$).
3. If H is a Hilbert space, then $M(\mathcal{K}(H))=\mathcal{B}(H)$.
4. If $\pi: A \hookrightarrow \mathcal{B}(H)$ is a nondegenerate (i.e. $\pi(A) H=H$) and faithful $*$-representation, then

$$
M(A) \cong\{T \in \mathcal{B}(H): T \pi(A) \cup \pi(A) T \subseteq \pi(A)\}
$$

Some facts: (a) $M(A)$ is the strict completion of A with strict topology generated by the seminorms $m \mapsto\|m(a)\|,\left\|m^{*}(a)\right\|$.
(b) If $\Phi: A \rightarrow M(B)$ is a nondeg. $*$-hom. (i.e., $\Phi(A) B=B$),

$$
\exists!\bar{\Phi}: M(A) \rightarrow M(B) \quad \text { s.t. } \quad \bar{\Phi}(m)(\Phi(a) b):=\Phi(m a) b .
$$

$\bar{\Phi}$ is strictly continuous, and faithful iff Φ is faithful.

The one point compactification and functional calculus

Define $A^{+}:=A+\mathbb{C} 1 \subseteq M(A)$ (the smallest unitization of A)
Then $C_{0}(X)^{+}=C\left(X^{+}\right)$with $X^{+}:=X \cup\{\infty\}$.
For $a \in A$ define $\sigma(a):=\left\{\lambda \in \mathbb{C}: a+\lambda 1\right.$ not invertible in $\left.A^{+}\right\}$.
If $a \in A$ is normal, i.e. $a^{*} a=a a^{*}$ then $C^{*}(a, 1) \subseteq A^{+}$is commutative, and

$$
\widehat{C^{*}(a, 1)} \cong \sigma(a) \quad \text { via } \quad \chi \mapsto \chi(a)
$$

The inverse of the Gelfand map $C^{*}(a, 1) \cong C\left(\widehat{C^{*}(a, 1)}\right)$ gives an isometric $*$-homomorphism

$$
\left.\Phi: C(\sigma(a))=C\left(\widehat{C^{*}(a, 1}\right)\right) \rightarrow C^{*}(a, 1): f \mapsto f(a)
$$

One checks that $f(a) \in C^{*}(a) \subseteq A$ if $f(0)=0$!
Important: This is the main tool for many constructions in C^{*}-theory (square roots, approximate units, positivity, etc..)

The maximal tensor product

Let A, B be C^{*}-algebras, $A \odot B$ the algebraic tensor product with multiplication and involution

$$
\begin{aligned}
& \quad\left(a_{1} \otimes b_{1}\right) \cdot\left(a_{2} \otimes b_{2}\right)=a_{1} a_{2} \otimes b_{1} b_{2} \quad \text { and } \quad(a \otimes b)^{*}=a^{*} \otimes b^{*} . \\
& \text { If } \pi: A \rightarrow M(C), \rho: B \rightarrow M(C) \text { s.t. } \pi(a) \rho(b)=\rho(b) \pi(a) \forall a, b .
\end{aligned}
$$

Then there exists a $*$-homom.

$$
\pi \times \rho: A \odot B \rightarrow M(C) ; \sum a_{i} \otimes b_{i} \mapsto \sum \pi\left(a_{i}\right) \rho\left(b_{i}\right)
$$

For $x \in A \odot B$ define

$$
\|x\|_{\max }:=\sup _{\pi \times \rho}\|\pi \times \rho(x)\| \quad \text { and } \quad A \otimes_{\max } B:=\overline{A \odot B}{ }^{\|\cdot\|_{\max }}
$$

By construction, every $\pi \times \rho$ extends uniquely to $A \otimes_{\max } B$!
Conversely: let $i_{A}, i_{B}:(A, B) \hookrightarrow M\left(A \otimes_{\max } B\right)$ given by

$$
i_{A}(a)\left(a^{\prime} \otimes b^{\prime}\right)=a a^{\prime} \otimes b \quad \text { and } \quad i_{B}(b)\left(a^{\prime} \otimes b^{\prime}\right)=a \otimes b b^{\prime}
$$

If $\Phi: A \otimes_{\max } B \rightarrow M(C)$ any nondeg. $*$-homomorphism, then

$$
\Phi=\pi \times \rho \quad \text { with } \quad \pi:=\bar{\Phi} \circ i_{A}, \rho:=\bar{\phi} \circ i_{B} .
$$

The minimal tensor product

Let $\pi: A \rightarrow \mathcal{B}(H), \rho: B \rightarrow \mathcal{B}(K)$ be faithful $*$-representations.
$\pi \otimes \rho: A \odot B \rightarrow \mathcal{B}(H \hat{\otimes} K) ; \pi \otimes \rho(a \otimes b)(\xi \otimes \eta)=\pi(a) \xi \otimes \rho(b) \eta$.
Takesaki '64 The Norm $\|x\|_{\text {min }}:=\|\pi \otimes \rho(x)\|$ does not depend on the choices π and ρ and it is the smallest C^{*}-cross norm on $A \odot B$.
$A \otimes_{\text {min }} B=\overline{A \odot B}{ }^{\|\cdot\|_{\text {min }}}$ is called the minimal tensor product.
Definition
A C^{*}-algeba A is called nuclear if $\forall B: A \otimes_{\max } B=A \otimes_{\min } B$.
Examples
(a) $C_{0}(X)$ is nuclear with $C_{0}(X) \otimes B=C_{0}(X, B)$ and $C_{0}(X) \otimes C_{0}(Y)=C_{0}(X \times Y)$.
(b) $\mathcal{K}(H)$, type I C^{*}-algebras, $C^{*}(G)$ if G connected or amenable are nuclear.
(c) The following are not nuclear: $\mathcal{B}(H), C^{*}\left(\mathbb{F}_{2}\right), C^{*}(\Gamma)$ for Γ discrete non-amenable!

(twisted) Group C*-algebras

Let G be a locally compact group, and $\omega: G \times G \rightarrow \mathbb{T}$ a Borel 2-cocycle, i.e. ω is a Borel map such that $\forall s, t \in G$:

$$
\omega(s, t) \omega(s t, r)=\omega(s, t r) \omega(t, r) \quad \text { and } \quad \omega(s, e)=1=\omega(e, s)
$$

Let $L^{1}(G, \omega):=L^{1}(G)$ equipped with
$f_{*_{\omega}} g(s)=\int_{G} f(t) g\left(s^{-1} t\right) \omega\left(t, t^{-1} s\right) d t, f^{*}(s)=\Delta\left(s^{-1}\right) \overline{\omega\left(s, s^{-1}\right) f\left(s^{-1}\right)}$
An ω-representation is a strictly Borel map $V: G \rightarrow U M(B)$, s.t.

$$
V_{s} V_{t}=\omega(s, t) V_{s t}
$$

It integrates to $\tilde{V}: L^{1}(G, \omega) \rightarrow M(B) ; \tilde{V}(f)=\int_{G} f(t) V_{t} d t$.
Define $C^{*}(G, \omega):=\overline{L^{1}(G, \omega)}{ }^{\|\cdot\|_{\text {max }}}, \quad\|f\|_{\text {max }}=\sup _{V}\|\tilde{V}(f)\|$.

(twisted) Group C* algebras

Observation: there is canonical ω-representation

$$
i_{G}: G \rightarrow U M\left(C^{*}(G, \omega)\right), \quad\left(i_{G}(s)(f)\right)(t)=\omega\left(s, s^{-1} t\right) f\left(s^{-1} t\right) .
$$

Then: If $\Phi: C^{*}(G, \omega) \rightarrow M(B)$ is a nondeg. *-representation we get

$$
\Phi=\tilde{V} \quad \text { for } \quad V=\Phi \circ i_{G} .
$$

We therefore get a one-to-one correspondence between nondeg *-reps of $C^{*}(G, \omega)$ and ω-unitary reps of G !
Note: If $B=\mathcal{K}(H)$, then $M(B)=\mathcal{B}(H)$ and $U M(B)=\mathcal{U}(H)$ Hence this correspondence covers representations on Hilbert spaces and it preserves irreducibilty and unitary equivalence in both directions!

If $\omega \equiv 1$ we get the maximal (or full) group C^{*}-algebra $C^{*}(G)$, which is universal for unitary representations $U: G \rightarrow U M(B)$ (strictly cont. homomorphisms). We also get a one-to-one correspondence

$$
\widehat{G} \longleftrightarrow \widehat{C^{*}(G)} .
$$

Examples

1. Each $\omega \in Z^{2}(\mathbb{Z}, \mathbb{T})$ is equivalent to one of

$$
\omega_{\Theta}(n, m)=e^{2 \pi i\langle\Theta n, m\rangle}, \quad \Theta \in M_{n}(\mathbb{R}) \text { s.t. } \Theta^{t}=-\Theta
$$

Then $C^{*}\left(\mathbb{Z}^{n}, \omega_{\Theta}\right)$ is an n-dimensional non-commutative torus

$$
C^{*}\left(\mathbb{Z}^{n}, \omega_{\Theta}\right)=C^{*}\left(u_{1}, \ldots, u_{n}: u_{i} \text { unitary } u_{i} u_{j}=e^{2 \pi i \Theta_{i j}} u_{j} u_{i}\right)
$$

Note: If $\omega \equiv 1$ we get $C^{*}\left(\mathbb{Z}^{n}\right) \cong C\left(\mathbb{T}^{n}\right)$.
2. $G=\mathbb{R}^{n}$ we have $\omega \sim \omega_{\Theta}$ as above and

$$
C^{*}\left(\mathbb{R}^{n}, \omega_{\Theta}\right) \cong C_{0}\left(\mathbb{R}^{k}\right) \otimes \mathcal{K}\left(L^{2}\left(\mathbb{R}^{m}\right)\right)
$$

for some k, m with \mathbb{R}^{k} the radical of $\Theta, k+2 m=n$.
If Θ is totally skew (i.e. $k=0$): $C^{*}\left(\mathbb{R}^{n}, \omega_{\Theta}\right)=\mathcal{K}\left(L^{2}\left(\mathbb{R}^{m}\right)\right)$

reduced (twisted) Group C^{*}-algebras

Definition Let (G, ω) be given. Then

$$
\lambda_{\omega}: G \rightarrow \mathcal{U}\left(L^{2}(G)\right) ; \quad\left(\lambda_{\omega}(s) \xi\right)(t):=\omega\left(s, s^{-1} t\right) \xi\left(s^{-1} t\right) .
$$

is called the left ω-regular representation of G. We call

$$
C_{r}^{*}(G, \omega):=\lambda_{\omega}\left(C^{*}(G, \omega)\right) \subseteq \mathcal{B}\left(L^{2}(G)\right)
$$

the reduced ω-twisted group C^{*}-algebra of G.
Note: If G amenable, then $\lambda_{\omega}: C^{*}(G, \omega) \xrightarrow{\cong} C_{r}^{*}(G, \omega)$.
If $\omega \equiv 1$ we have $C^{*}(G)=C_{r}^{*}(G) \Longleftrightarrow G$ amenable.

C*-dynamical systems

Let $\operatorname{Aut}(A)$ denote the group of $*$-automorphism of A. An action

$$
\alpha: G \rightarrow \operatorname{Aut}(A) ; s \mapsto \alpha_{s}
$$

is a group homom such that $s \mapsto \alpha_{s}(a)$ is continuous $\forall a \in A$.
Examples
(1) If $G \curvearrowright X ;(s, x) \mapsto s x$ is an action of G on X, then

$$
\tau: G \rightarrow \operatorname{Aut}\left(C_{0}(X)\right) ;\left(\tau_{s}(f)\right)(x):=f\left(s^{-1} x\right)
$$

is a corresponding action on $C_{0}(X)$.
(2) Let N be a closed normal subgroup of G. Then there exists a decomposition action

$$
\alpha: G \rightarrow \operatorname{Aut}\left(C^{*}(N)\right) ; \quad\left(\alpha_{s}(f)\right)(n)=\delta(s) f\left(s^{-1} n s\right), \quad f \in L^{1}(N)
$$

with $\delta(s)=\Delta_{G}(s) \Delta_{G / N}\left(s^{-1}\right)$.

Crossed products

Let $\alpha: G \rightarrow \operatorname{Aut}(A)$ be an action. Let

$$
C_{c}(G, A):=\{f: G \rightarrow A: f \text { cont. with supp }(f) \text { compact }\}
$$

equipped with convolution and involution

$$
f * g(s)=\int_{G} f(s) \alpha_{s}\left(g\left(s^{-1} t\right)\right) d s \quad f^{*}(s)=\Delta\left(s^{-1}\right) \alpha_{s}\left(f\left(s^{-1}\right)\right)^{*}
$$

A covariant representation $(\pi, U):(A, G) \rightarrow M(B)$ consists of a *-rep $\pi: A \rightarrow M(B)$ and a unitary rep. $U: G \rightarrow U M(B)$ such that

$$
\forall a \in A, s \in G: \quad \pi\left(\alpha_{s}(a)\right)=U_{s} \pi(a) U_{s}^{*}
$$

Then (π, U) integrates to

$$
\pi \times U: C_{c}(G, A) \rightarrow M(B) ; \quad \pi \times U(f)=\int_{G} \pi\left(f(s) U_{s} d s\right.
$$

Define

$$
A \rtimes_{\alpha} G:={\overline{C_{c}(G, A)}}^{\|\cdot\|_{\max } \quad \text { with } \quad\|f\|_{\max }:=\sup _{(\pi, U)}\|\pi \times U(f)\|}
$$

Crossed products

Recall: The full (or maximal) crossed product $A \rtimes_{\alpha} G$ is defined as

$$
A \rtimes_{\alpha} G:=\overline{C_{c}(G, A)}{ }^{\|\cdot\| \max } \quad \text { with } \quad\|f\|_{\max }:=\sup _{(\pi, U)}\|\pi \times U(f)\| .
$$

Then by construction, every covariant rep (π, U) integrates to

$$
\pi \rtimes U: A \rtimes_{\alpha} G \rightarrow M(B) .
$$

Conversely, $\exists\left(i_{A}, i_{G}\right):(A, G) \rightarrow M\left(A \rtimes_{\alpha} G\right)$ given by

$$
\left(i_{A}(a) f\right)(s):=\operatorname{af}(s) \quad\left(i_{G}(s) f\right)(t):=\alpha_{s}\left(f\left(s^{-1} t\right)\right), \quad f \in C_{c}(G, A)
$$

If $\Phi: A \rtimes_{\alpha} G \rightarrow M(B)$ is any nondeg. *-homomorphism, then

$$
\Phi=\pi \rtimes U \quad \text { with } \quad \pi=\bar{\Phi} \circ i_{A}, U=\bar{\Phi} \circ i_{G} .
$$

Reduced crossed product

The regular representation is the integrated form

$$
\Lambda:=\Lambda_{A} \rtimes \Lambda_{G}: A \rtimes_{\alpha} G \rightarrow M\left(A \otimes \mathcal{K}\left(L^{2}(G)\right)\right)
$$

with $\left(\Lambda_{A}, \Lambda_{G}\right)$ defined by $\Lambda_{G}=1_{A} \otimes \lambda_{G}$ and

$$
\Lambda_{A}: A \xrightarrow{\tilde{\alpha}} M\left(A \otimes C_{0}(G)\right) \xrightarrow{i d_{A} \otimes M} M\left(A \otimes \mathcal{K}\left(L^{2}(G)\right)\right)
$$

with $\left.\tilde{\alpha}(a) \in C_{b}(G, A) \subseteq M\left(A \otimes C_{0}(G)\right) ; \quad \tilde{\alpha}(a)(s)=\alpha_{s^{-1}}(a)\right)$
We define the reduced crossed product

$$
A \rtimes_{\text {red }} G:=\Lambda\left(A \rtimes_{\alpha} G\right) \subseteq M\left(A \otimes \mathcal{K}\left(L^{2}(G)\right)\right)
$$

If $\pi: A \rightarrow \mathcal{B}(H)$ is faithful, then we get a faithful representation

$$
\text { Ind } \pi: A \rtimes_{\text {red }} G \subseteq M\left(A \otimes \mathcal{K}\left(L^{2}(G)\right)\right) \xrightarrow{\pi \otimes \text { id } \mathcal{K}} \mathcal{B}\left(H \hat{\otimes} L^{2}(G)\right) .
$$

Alternatively: Ind $\pi=\tilde{\pi} \rtimes\left(1 \otimes \lambda_{G}\right)$ with

$$
(\tilde{\pi}(a) \xi)(s):=\pi\left(\alpha_{s^{-1}}(a)\right) \xi(s) \quad \xi \in L^{2}(G, H) \cong H \hat{\otimes} L^{2}(G) .
$$

Crossed products

Some facts

1. If B is any C^{*}-algebra, then

$$
\begin{aligned}
&\left(A \rtimes_{\alpha} G\right) \otimes_{\max } B \cong\left(A \otimes_{\max } B\right) \rtimes_{\alpha \otimes \mathrm{id}_{B}} G \\
&\left(A \rtimes_{\text {red }} G\right) \otimes_{\min } B \cong\left(A \otimes_{\min } B\right) \rtimes_{\alpha \otimes \text { id }, \text { red }} G
\end{aligned}
$$

and
2. If G amenable, then $A \rtimes_{\alpha} G=A \rtimes_{\text {red }} G$.
3. G amenable and A nuclear $\Longrightarrow A \rtimes_{\alpha} G$ is nuclear, since

$$
\begin{aligned}
& \left(A \rtimes_{\alpha} G\right) \otimes_{\max } B \cong\left(A \otimes_{\max } B\right) \rtimes_{\alpha \otimes \text { id }} G \\
& \cong\left(A \otimes_{\min } B\right) \rtimes_{\alpha \otimes \text { id }} G \cong\left(A \otimes_{\min } B\right) \rtimes_{\text {red }} G \\
& \cong\left(A \rtimes_{\text {red }} G\right) \otimes_{\min } B \cong\left(A \rtimes_{\alpha} G\right) \otimes_{\min } B .
\end{aligned}
$$

Other constructions

One can attach C^{*}-algebras to all kind of mathematical objects, such as

1. groupoids and groupoid actions.
2. partial actions.
3. semigroups and rings
4. graphs and higher rank graphs.
5. coarse metric spaces.
6.
and the structure of the algebras reflects the structure of the mathematical objects.

Dual spaces and the Fell topology

Let $\operatorname{Rep}(A):=\left\{\pi: A \rightarrow \mathcal{B}\left(H_{\pi}\right): *\right.$-rep $\} / \sim$ and

$$
\widehat{A}:=\{\pi \in \operatorname{Rep}(A): \pi \text { irreducible }\} .
$$

If G is a loc cpct group: $\operatorname{Rep}(G) \leftrightarrow \operatorname{Rep}\left(C^{*}(G)\right)$ and $\widehat{G} \leftrightarrow \widehat{C^{*}(G)}$
Definition If $\pi \in \operatorname{Rep}(A)$ and $E \subseteq \operatorname{Rep}(A)$ we define

$$
\pi \prec E \Longleftrightarrow \operatorname{ker} \pi \supseteq \bigcap_{\rho \in E} \operatorname{ker} \rho .
$$

We then say π is weakly contained in E. Restricted to \widehat{A} we get

$$
\pi \in \bar{E} \Leftrightarrow \pi \prec E
$$

Similarly, in $\operatorname{Prim}(A):=\{\operatorname{ker} \pi: \pi \in \widehat{A}\}$ we have the closure operation

$$
P \in \bar{E} \Leftrightarrow P \supseteq \bigcap_{Q \in E} Q .
$$

These topologies often have very poor separation properties, very often \widehat{A} is not even T_{0} ! But $\operatorname{Prim}(A)$ is always T_{0} !

Fell-topology

For $\pi \in \operatorname{Rep}(A)$ nongeg. (resp. $\pi \in \operatorname{Rep}(G))$ and $\xi \in H_{\pi}$ with $\|\xi\|=1$ let

$$
\varphi_{\pi, \xi}(a)=\langle\xi, \pi(a) \xi\rangle \quad\left(\text { resp. } \varphi_{\pi, \xi}(g)=\langle\xi, \pi(g) \xi\rangle\right)
$$

be a state (resp. positive definite funct) associated to π. Then
Theorem (Fell 1960's) The following are equivalent:

1. $\pi \prec E$
2. Every state associated to π is a weak*-limit of states associated to E.

If π is irreducible, these are equivalent to
3. \exists a state associated to π which is a weak*-limit of states associated to E.
If $A=C^{*}(G)$, then states can be replaced by positive definite functions and weak*-convergence by uniform convergence on compact subsets of G.

Fell-topology

Suppose $I \triangleleft A$ is a closed ideal. Then if $\pi \in \widehat{A}$ we get either

$$
\left.\pi\right|_{I} \in \hat{I} \text { or } \pi(I)=\{0\}
$$

In the latter case $\pi \in \widehat{A / I}$ and $\quad \widehat{A}=\widehat{I} \cdot \widehat{A / I}$.
Similarly $\operatorname{Prim}(A)=\operatorname{Prim}(I) \cup ் \operatorname{Prim}(A / I)$.
The sets \widehat{I} (resp. $\widehat{A / I}$) are the open (resp. closed) subsets of \widehat{A} and similar relations hold for $\operatorname{Prim}(A)$!
Recall that a set E is called locally closed if E is open in its closure!

Important fact: $E \subset \operatorname{Prim}(A)$ is locally closed if and only if there exist closed ideals $I \subseteq J \subseteq A$ such that $E=\operatorname{Prim}(J / I)$.

Simple C^{*}-algebras

Definition $A C^{*}$-algebra is called simple if $\{0\}$ and A are the only closed ideals in A.
If all points $P \in \operatorname{Prim}(A)$ are locally closed, then each point determines a simple subquotient J / I of A s.t. $\{P\}=\operatorname{Prim}(J / I)$.
The simple C^{*}-algebras can be viewed as the building blocks of general C^{*}-algebras! (Elliott classification programme!)

Examples

1. $M_{n}(\mathbb{C})$ and $\mathcal{K}(H)$ are simple.
2. Let $\Theta \in M_{n}(\mathbb{R})$ with $\Theta^{t}=-\Theta$. Then $C^{*}\left(\mathbb{Z}^{n}, \omega_{\Theta}\right)$ is simple if Θ is totally skew:

$$
\forall k \in \mathbb{Z}^{n}:\left(\forall m \in \mathbb{Z}^{n}:\langle k, \Theta m\rangle=0\right) \Rightarrow k=0
$$

3. If $G \curvearrowright X$ free and minimal, then $C_{0}(X) \rtimes_{\text {red }} G$ is simple.

Theorem (Lüdeking-Poguntke '94) The simple subquotients of $C^{*}(G)$ for a connected G are $\mathcal{K}(H)$ or $\mathcal{K}(H) \otimes C^{*}\left(\mathbb{Z}^{n}, \omega_{\Theta}\right)$.

Type I C*-algebras

Definition $\mathrm{A} C^{*}$-algebra A is called type I (or GCR, or postliminal) if

$$
\forall \pi \in \widehat{A}: \quad \pi(A) \subseteq \mathcal{K}\left(H_{\pi}\right) \neq \emptyset
$$

And A is called CCR (or liminal) if $\quad \forall \pi \in \widehat{A}: \quad \pi(A)=\mathcal{K}\left(H_{\pi}\right)$.
Theorem (Glimm) The following are equivalent (for A separable)

1. A is type I.
2. the map ker: $\widehat{A} \rightarrow \operatorname{Prim}(A) ; \pi \mapsto \operatorname{ker} \pi$ is a bijection.
3. \hat{A} is a T_{0}-space.
4. \widehat{A} is almost Hausdorff (every nonempty closed set contains a dense open Hausdorff subset).

Examples The following groups have type I group algebras:

1. Motion groups, connected nilpotent groups.
2. reductive groups over local fields (Harish Chandra, Bernstein)
3. real (locally) algebraic groups (Dixmier, Pukanszky).
4. algebraic groups over \mathbb{Q}_{p} (Bekka-E '21)

Continuous-trace C^{*}-algebras

Definition A is called a continuous-trace C^{*}-algebra, if \widehat{A} is Hausdorff, and
$\forall \pi \in \widehat{A} \exists \pi \in U \subseteq \widehat{A}$ and $p \in A$ such that $\forall \rho \in U: \rho(p)$ is a rank-one projection.
Dixmier-Douady Let A be a separable and continuous trace with $X:=\widehat{A}$. Then there exists a locally trivial bundle $p: \mathcal{X} \rightarrow X$ with fibres $p^{-1}(x)=\mathcal{K}\left(H_{x}\right)$ for all $x \in X$ such that

$$
A \otimes \mathcal{K}\left(\ell^{2}\right) \cong \Gamma_{0}(X, \mathcal{X})
$$

Then: the stable continuous trace algebras with fixed spectrum $X=\widehat{A}$ are classified by

$$
\check{H}^{1}(X, \mathcal{P} U) \cong \check{H}^{2}(X, \mathbb{T}) \cong \check{H}^{3}(X, \mathbb{Z})
$$

Theorem (Dixmier) For every type I C^{*}-algebra A there is an ascending series of closed ideals $\left(I_{\nu}\right)$ over the ordinal numbers ν s.t. $I_{\nu+1} / I_{\nu}$ is continuous trace for all ν and $A=I_{\nu_{0}}$ for some ν_{0}.

Bibliography

园
Jacques Dixmier, C*-algebras, Translated from the French by Francis Jellett, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
宔
J. Cuntz, S. Echterhoff, X. Li, and G. Yu. K-theory for group C^{*}-algebras and semigroup C^{*}-algebras, Oberwolfach Seminars, 47, Birkhäuser/Springer, Cham, 2017.

Thanks for your attention!

