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Lie theory, the theory of Lie groups, Lie algebras and their applications, is a fundamental part 
of mathematics. Since World War II it has been the focus of a burgeoning research effort, and is 
now seen to touch a tremendous spectrum of mathematical areas, including classical, differential, 
and algebraic geometry, topology, ordinary and partial differential equations, complex analysis 
(one and several variables), group and ring theory, number theory, and physics, from classical to 
quantum and relativistic. 

It is impossible in a short space to convey the full compass of the subject, but we will cite some 
examples. An early major success of Lie theory, occurring when the subject was still in its infancy, 
was to provide a systematic understanding of the relationship between Euclidean geometry and 
the newer geometries (hyperbolic non-Euclidean or Lobachevskian, Riemann's elliptic geometry, 
and projective geometry) that had arisen in the 19th century. This led Felix Klein to enunciate his 
Erlanger Programm [Kl] for the systematic understanding of geometry. The principle of Klein's 
program was that geometry should be understood as the study of quantities left invariant by the 
action of a group on a space. Another development in which Klein was involved was the 
Uniformization Theorem [Be] for Riemann surfaces. This theorem may be understood as saying 
that every connected two-manifold is a double coset space of the isometry group of one of the 3 
(Euclidean, hyperbolic, elliptic) standard 2-dimensional geometries. (See also the recent article [F] 
in this MONTHLY.) Three-manifolds are much more complex than two manifolds, but the 
intriguing work of Thurston [Th] hi!s gone a long way toward showing that much of their structure 
can be understood in a way analogous to the 2-dimensional situation in terms of coset spaces of 
certain Lie groups. 

More or less contemporary with the final proof of the Uniformization Theorem was Einstein's 
[E] invention of the special theory of relativity and its instatement of the Lorentz transformation 
as a basic feature of the kinematics of space-time. Einstein's intuitive treatment of relativity was 
followed shortly by a more sophisticated treatment by Minkowski [Mk] in which Lorentz 
transformations were shown to constitute a certain Lie group, the isometry group of an indefinite 

· Riemannian metric on IR 4• Similarly, shortly after Heisenberg [Hg] introduced his famous 
Commutation Relations in quantum mechanics, which underlie his Uncertainty Principle, Her­
mann W eyl [W] showed they could be interpreted as the structure relations for the Lie algebra of a 
certain two-step nilpotent Lie group. As the group-theoretical underpinnings of physics became 
better appreciated, some physicists, perhaps most markedly Wigner [Wg], in essence advocated 
extending Klein's Erlanger Programm to physics. Today, indeed, symmetry principles based on 
Lie theory are a standard tool and a major source of progress in theoretical physics. Quark theory 
[Dy], in particular, is primarily a (Lie) group-theoretical construct. 

These examples could be multiplied many times. The applications of Lie theory are astonishing 
in their pervasiveness and sometimes in their unexpectedness. The articles of Borel [Bo2] and 
Dyson [Dy] mention some. The recent article of Proctor [Pr] in this MONTHLY discusses an 
application to combinatorics. Some points of contact of Lie theory with the undergraduate 
curriculum are listed in §7. 

The article of Proctor also illustrates the need to broaden understanding of Lie theory. Proctor 
did not feel he could assume knowledge of basic Lie theoretic facts. Though hardly an unknown 
subject, Lie theory is poorly known in comparison to its importance. Especially since it provides 
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unity of methods and viewpoints in the many subjects to which it relates, its wide dissemination 
seems worthwhile. Yet it has barely penetrated the undergraduate curriculum, and it is far from 
universally taught in graduate programs. 

Part of the reason for the pedagogy gap is that standard treatments [A], [Ch], [He] of the 
foundations of Lie theory involve substantial prerequisites, including the basic theory of differen­
tiable manifolds, some additional differential geometry, and the theory of covering spaces. This 
approach tends to put a course in Lie theory, when available, in the second year of graduate study, 
after specialization has already begun. While a complete discussion of Lie theory does require 
fairly elaborate preparation, a large portion of its essence is accessible on a much simpler level, 
appropriate to advanced undergraduate instruction. This paper attempts to present the theory at 
that level. It presupposes only a knowledge of point set topology and calculus in normed vector 
spaces. In fact, for the Lie theory proper, only normed vector spaces are necessary. This 
simplification is achieved by not considering general or abstract Lie groups, but only groups 
concretely realized as groups of matrices. Since such groups provide the great bulk of significant 
t;Xamples of Lie groups, for many purposes this restriction is unimportant. 

The essential phenomenon of Lie theory, to be explicated in the rest of this paper, is that one 
may associate in a natural way to a Lie group G its Lie algebra g. The Lie algebra g is first of all a 
vector space and secondly is endowed with a bilinear nonassociative product called the Lie bracket 
or commutator and usually denoted [ , ]. Amazingly, the group G is almost completely determined 
by g and its Lie bracket. Thus for many purposes one can replace G with g. Since G is a 
complicated nonlinear object and g is just a vector space, it is usually vastly simpler to work with 
g. Otherwise mtractable computations may become straightforward linear algebra. This is one 
source of the power of Lie theory. 

The basic object mediating between Lie groups and Lie algebras is the one-parameter group. 
Just as an abstract group is a coperent system of cyclic groups, a Lie group is a (very) coherent 
system of one-parameter groups. The purpose of the first two sections, therefore, is to provide 
some general philosophy about one-parameter groups. Section 1 provides background on homeo­
morphism groups, and one-parameter groups are defined in a general context in §2. Discussion of 
Lie groups proper begins in §3. Technically it is independent of §§1 and 2; but these sections will, 
I hope, give some motivation for reading on. Those who need no motivation or dislike philosophy 
may go directly to §3. There one-parameter groups of linear transformations are defined and are 
described by means of the exponential map on matrices. In §4 the exponential map is studied, and 
the commutator bracket makes its appearance. Section 5 is the heart of the paper. It defines and 
gives examples of matrix groups, the class of Lie groups considered in this paper. Then it defines 
Lie algebras, and shows that every matrix group can be associated to a Lie algebra which is 
related to its group in a close and precise way. The main statement is Theorem 17, and Theorem 
19 and Corollary 20 are important complements. Finally §6 ties up some loose ends and §7, as 
noted, describes some connections of Lie theory with the standard curriculum. 

Bibliographical note: The arguments of sections 3, 4 and 5 are very close to those given by von 
Neumann [Nn] in his 1929 paper on Hilbert's 5th problem. A modem development of basic Lie 
theory which incorporates these results is [Go]. 

1. Homeomorphism Groups 

In this section, we use the standard terminology of general topology, as for example in [Ke]. 
Let X be a set. Then the collection Bi( X) of bijections from X to itself is a group with 

composition of mappings as the group law. Now suppose Xis in fact a topological space. Then the 
set Hm( X) of homeomorphisms from X to itself is a subgroup of Bi( X). It seems natural to try to 
topologize Hm( X). The topology should of course reflect how Hm( X) acts on X, so that maps 
close to the identity move points very little. But a topology on Hm(X) should also be consistent 
with the group structure of Hm(X). More precisely and generally, given a group G, if it is to be 
made into a topological space in a manner consistent with its group structure, the topology it is 



602 ROGER HOWE [November 

given should satisfy two conditions. 

(1.1) (i) The multiplication map (g1, g2 ) ~ g1g2 from G x G to G should be continuous. 
(ii) The inverse map g ~ g- 1 from G to G should be continuous. 

A topology on G satisfying these two compatibility criteria is called a group topology. A group 
endowed with a group topology is called a topological group. Some standard treatments of 
topological groups are [Hn] and [P]. 

In short, then, we would like to make Hm( G) into a topological group. This is not so 
satisfactorily done for completely general X, but if Xis locally compact Hausdorff, there is a nice 
topology on Hm(X), known as the compact-open topology. Before defining it, we make some 
general observations about group topologies. These will simplify the definition. 

Given a group G and an element g E G, define Ag, left-translation by g, and Pg, right-translation 
by g, to be the maps 

(1.2) Ag: G ~ G Pg: G ~ G 

given by 

Ag(g') = gg' Pg(g') = g'g-1. 

For U ~ G, set 

(1.3) gU = Ag(U) Ug = Pg-1(U). 

LEMMA 1. Let G be a topological group, and g E G. 
(a) The map Ag: G ~ G is a homeomorphism. Similarly Pg: G ~ G is a homeomorphism. 
(b)If U ~ G is a neighborhood of the identity le of G, then gU and Ug are neighborhoods of g. 

Similarly if V ~ G is a neighborhood' of g, then g- 1v and Vg- 1 are neighborhoods of le. 

Proof. One checks from the definition of Ag that A is a homeomorphism, i.e., 

(1.4) Ago Ah= Agh 

for g, h E G. It follows directly from the condition (1.1) (i) that Ag is continuous. Likewise, the 
map Ag-1 is also continuous. From (1.4) one concludes that 

(1.5) Ag-1 = (Ag)- 1. 

Hence Ag is continuous with continuous inverse, that is, a homeomorphism. The proof for Pg is 
essentially identical. 

Since Ag(lc) = g and Ag(U) = gU by definition, part b) follows since the homeomorphic 
image of an open set is open. • 

COROLLARY 2. A group topology is determined by its system of neighborhoods of the identity. 

Proof. Indeed, a topology on G is determined by the collection of neighborhood systems of 
each point of G. But according to part (b) of the lemma, for a group topology, the system of 
neighborhoods around a point g E G is determined by the system of neighborhoods around le.• 

Let us call a topology on G such that all Ag and Pg are homeomorphisms a homogeneous 
topology. Lemma 1 says group topologies are homogeneous. Evidently Corollary 2 applies to all 
homogeneous topologies, not only group topologies. Thus an obvious question is what conditions 
must a neighborhood system at the identity satisfy in order that the associated homogeneous 
topology be a group topology? This question has a simple answer. 

LEMMA 3. A homogeneous topology on a group G is a group topology if and only if the system of 
neighborhoods of le satisfies conditions (a) and (b) below. 

(a) If U is a neighborhood of le, there is another neighborhood V of le such that V ~ u-1; where 

(1.6) u-1 = {g-1: g Eu}. 
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(b) If U is a neighborhood of la, there are other neighborhoods V, W of la such that VW ~ U, 
where 

(1.7) VW = { gh: g E V, h E W}. 

Proof. The conditions (a) and (b) are clearly necessary for a topology to be a group topology, 
since they are one way of stating that the inverse and multiplication maps are continuous at la. 
We will check this for condition (b). In order for multiplication to be continuous at la X la, 
given a neighborhood U ~ G of la, we must find a neighborhood U' ~ G X G of la X la such 
that for any point (g, g') of U', the product gg' is in U. But by definition of the product topology 
on G X G, any neighborhood U' of la X la contains a product V X W, where V, W ~Gare 
both neighborhoods of la. But the image of V X Wunder the multiplication map is just the set 
VW defined in (1.7). So condition (b) amounts to continuity of multiplication at the point 
la X la e G X G. 

Thus to complete the lemma we need to show that if the multiplication and inverse maps are 
continuous at the identity, and if the topology on G is homogeneous, then they are continuous 
everywhere. Let U be a neighborhood of la. Then since "Ag is a homeomorphism, gU is a 
neighborhood of g, and we may write 

(1.8) 

Thus on gU, the inverse map is a composition of Ag-1, the inverse map on U, and Pg· Since Ag-1 

and Pg are continuous, and Ag-1 takes g to la, and the inverse map is continuous at la, we see that 
the inverse map is continuous at g also. The proof that multiplication is continuous everywhere is 
analogous and is left as an exercise. • 

We return to the question of t9pologizing Hm( X). Corollary 2 allows us to save work in our 
definition of the topology on Hm( X) by only defining neighborhoods of the identity map 1 x on 
X, and declaring by fiat all left or right translates of these neighborhoods also to be open sets. 
Lemma 3 tells us what we must check to know our definition yields a group topology. 

From now on, we take X to be a locally compact Hausdorff space. Let C ~ X be compact, and 
let 0 ~ C be open. Define 

(1.9) U(C, 0) = {he Hm(X): h(C) ~ 0, h- 1(C) ~ 0 }. 

If { C; }, 1 ~ i ~ n, are compact subsets of X, and { O;} are open subsets of X such that C; ~ O;, 
set 

n 

(1.10) U({C;}{O;}) = n U(C;,O;). 
i=l 

DEFINITION. Let X be a locally compact Hausdorff space. The compact-open topology on 
Hm( X) is the homogeneous topology such that a base for the neighborhoods of 1 x consists of the 
sets U({ C; }, { O;}) of equation (1.10). 

PROPOSITION 4. The compact-open topology on Hm(X) is a Hausdorff group topology. 

Proof. Since we have decreed the compact open topology to be homogeneous, we need only 
check the conditions of Lemma 3 to show it is a group topology. Condition (a) is automatic since 
the sets U(C, 0) are defined to be invariant under the inverse map on Hm(X). Let us check 
condition (b). If Cf;, Vi and W; are neighborhoods of lx such that V;W; ~ Cf;, then evidently 

Hence since the sets (1.10) are intersections of the sets U( C, 0) of (1.9), it will be enough to check 
condition (b) with the neighborhood U of the form U = U(C, 0). Since Xis locally compact 
Hausdorff, we can by a standard separation theorem (cf. [Ke, Chap. 5, Theorem 18)) find an open 
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O' ~ X such that the closure C' of O' is compact, and 

C~O'~C'~O. 

Then set V = W = U(C', 0) n U(C, O'). If h1, h2 E V, we find 

h1 °h 2 (C) = h1 (h 2 (C)) ~ h1(0') ~ h1 (C') ~ 0 

[November 

and similarly for (h1 ° h2 )- 1 = h2. 1 0 h1 1. Thus h1 ° h2 E U( C, 0) = U, or VW ~ U as was to be 
shown, and the compact-open topology is a group topology on Hm( X). 

To show that a group topology is Hausdorff is a fairly simple matter. We record the relevant 
observation as a separate result. 

LEMMA 5. Let G be a topological group. Let H ~ G be the intersection of all neighborhoods of la. 
Then His a normal subgroup of G. Further, G is Hausdorff if and only if H = {1 a}. 

Proof. Suppose h1, h 2 EH. Given a neighborhood U of 1(,, we can find neighborhoods V, W 
of la such that VW ~ U. Since h1 E V and h2 E W, we see that h1h2 E U. Hence h1h 2 EH also. 
In similar fashion, one sees that h1 1 EH. Hence His a group. Since the conjugate gUg- 1 of a 
neighborhood of la is again a neighborhood of la, we see that His also normal in G. 

Suppose H =la. Then given g E G, we can find a neighborhood U of la such that g fE U. Let 
V, W be neighborhoods of la such that VW ~ U. Then g v- 1 and W are neighborhoods of g and 
of la, respectively, and are disjoint. Now consider any two points g1, g2 E G. Set g = g! 1g2 , and 
apply the argument above. Translating on the left by g1, we find g1W and g2v- 1 are disjoint 
neighborhoods of g1 and g2 , respectively. Hence G is Hausdorff.• 

From Lemma 5 we see Proposition 4 will be proved if we produce for each h =fa lxin Hm(X) a 
compact C and open 0 such that h fE U(C, 0). Choose x EX such that h(x) =fax. Then 
evidently h fE U({x}, X- {h(x)}), • 

REMARK. In fact the compact-open topology on Hm( X) is better than Proposition 4 indicates. 
It is complete with respect to an appropriate uniform structure ([Ke, Chap. 6]). Also, if Xis second 
countable (hence metrizable), then Hm(X) is also second countable and metrizable. 

2. One-Parameter Groups: Flows and Differential Equations 

The real number system IR equipped with addition and its familiar topology is, as the reader 
may easily check, a topological group. 

DEFINITION. A one-parameter group of homeomorphisms of (the locally compact Hausdorff 
space) Xis a continuous homomorphism 

(2.1) cp: IR -+ Hm(X). 

It will be convenient to denote the image under <p of t by <rt rather than cp( t). Thus {<rt} is a 
family of homeomorphisms of X satisfying the rule 

(2.2) <rt 0 <rs = <rt+s t,sE!R. 

Since for each t the map <rt acts on X, a one-parameter group of homeomorphisms of X is also 
called an IR-action on X, or an action by IR on X. 

Given a one-parameter group <rt of homeomorphisms of X, we can define a map 

(2.3) cl>: IR X X-+ X, 

cp ( t' x) = <rt ( x) . 

The fact that t -+ <rt is a homomorphism is captured by the identities 

(2.4) (i) <l>(O,x)=x, 

(ii) <P(s, <P(t, x)) = <P(s + t, x). 
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The continuity of cp is reflected in the continuity of cl>. We state this fact formally. It will perhaps 
also shed some light on the significance of the compact-open topology on Hm( X). 

LEMMA 6. Let cl>: IR XX-+ X be a map. Fort E IR, define cp1 : X-+ X by formula (2.3) (ii). 
Then { cp1 } is a one-parameter group of homeomorphisms if and only if 

(a) cl> satisfies identities (2.4) and 

(b) cl> is continuous. 

REMARK. According to this lemma, if our goal were simply to define a one parameter group of 
homeomorphisms in the quickest way, we could short-circuit the whole discussion of §1 and 
simply define a one-parameter group of homeomorphisms as a map cl> satisfying the conditions of 
the lemma. However, that approach seemed unduly formalistic. 

Proof. It is a straightforward computation to verify that the identities (2.4) guarantee that for 
each t the map cp1 is in Bi(X) and t-+ cp1 is a homomorphism. Also it is obvious that the maps cp1 

will be in Hm(X) if and only if cl> is continuous in x for each fixed t. Thus the main thrust of the 
lemma is that t -+ cp1 is continuous from IR to Hm( X) if and only if cl> is jointly continuous in t 
and x. Let us verify this. 

Suppose cl> is continuous. Let C ~ X be compact, and 0 ~ X be open, with C ~ 0. Choose 
any x E C. By identity (2.4)(i), the point (0, x) E IR X X is in cp- 1(0). By continuity of cl> a 
neighborhood of (0, x) is contained in cl> - 1(0). This means there is a neighborhood N of x in X, 
and 8 > 0, depending on x, N, and 0, such that <l>(t, y) E 0 for y EN and !ti< 8. In other words 
cp1(y) E 0 for !ti < 8 and y E N. Since C is compact, we can find a finite number of X; E C such 
that the associated neighborhoods N; cover C. Suppose then that cl> ( t, Y;) E 0 for Y; E N; and 
jtj < 8;. Set 8 = min8;. Then we have <l>(t, c) E 0 for all c EC and jtj < 8. In other words, 
cp1 E U(C, 0) for !ti< 8. Clearly, by repeating this argument for any finite collection of compact 
C;'s and open O;'s containing them, we can show that cp1 E U({ C;}, { O; }) for all sufficiently 
small t. This shows that t-+ cp1 is continuous at the origin in IR. But now we appeal to the 
following lemma. 

LEMMA 7. Let cp: G-+ H be a homomorphism between topological groups. Then ip is continuous if 
and only if cp is continuous at lG. 

The proof of this lemma is left as an exercise to the reader, who will recognize in it the same 
spirit that informs Lemmas 2, 3, and 5. 

To finish Lemma 6, we must show that the continuity of t-+ cp1 implies continuity of cl>. 
Choose (tyx) E IR x X, and set y = <P(t, x). Let V be a neighborhood of y. Since cp1 is 
continuous, we can find a neighborhood W of x, with compact closure W, such that cp1(W) ~ V. 
Since cp1 is continuous int, we can find e > 0 so that cp, E U(cp1(W), V) for Isl< e. But then if 
(t', w) E (t - e, t + e) X W, we have 

<P(t', w) = <P(t' - t, <P(t, w)) = cp1,_ 1(<P(t, w)) E cp1,_ 1 (cp1(W)) ~ V. 

~n other words ( t - e, t + e) X W ~ cp- 1( V). Since V was an arbitrary neighborhood of y, we see 
cl> is continuous at (t, x). Since (t, x) is arbitrary, we see cl> is continuous.• 

Consider a one-parameter group cp1 of homeomorphisms of X and the associated map cl> 
defined by formula (2.3). The map cl> is a function of two variables, t and x, and the maps cp1 are 
obtained from cl> by temporarily fixing t and letting x vary. If on the other hand we fix x and let t 
vary, we get a map t-+ <P(t, x) = cp1(x) which defines a continuous curve in X, traced by the 
moving point cp1(x). Thus as t varies, each point of x moves continuously inside X, and various 
points move in a coherent fashion, so that we can form a mental picture of them flowing through 
X, each point along its individual path. For this reason, a one-parameter group of homeomor­
phisms of Xis also sometimes called a flow on X. 
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The notion of a flow is closely related to the theory of differential equations. Indeed, let 
x =or, and write 

x E Rn, X; ER. 

Then 

4>(t, x) = 4>(t, Xi, X2, ... ,Xn) = ( 4>i{t, Xi•· .. ,xn), . .. ,4>n(t, Xi•· .. ,xn)) 

is a function from Rn+i to Rn. Suppose ct> is not merely continuous, but differentiable. Define 

/:Rn--+ Rn 

by 

(2.5) aw I f(x) = -a (t, x) . 
t 1-0 

If we differentiate (2.4) (ii) with respect to s, and sets= 0, we obtain 

(2.6) aw~; x) = /{«I>{t, x)). 

In other words, for fixed x, the map yx(t) = «I>(t, x) is a solution of the system of differential 
equations 

(2.7) ~ = f(y), 

or 

dyd; =/;(Yi•· .. ,yn), for 1 "i" n. t I 

The solutionyx of (2.7) is the solution of (2.7) with butial conditionyx(O) = x. 
The system (2. 7) may be pictured geometrically as follows. At each point y e Rn, one draws 

the vector f(y) = <fi(y), / 2(y), ... ,fn(Y)). This gives a family of vectors which vary smoothly as 
y varies; such a family is called a vector field. A solution of the system (2.7) is a parametrized 
curve c(t) in Rn, such that at each point c(t) of the curve the tangent vector c'(t) is the 
pre-assigned vector/( c(t)). The 2-dimensional system 

d(~y) = (-y,x) 

whose solutions are the circles 

{ x { t), y { t)) = (a cos( 00 + t), a sin{ 00 + t)) 

is illustrated in Fig. 1. 
Suppose on the other hand that for each x we have a solution Yx(t) of the system (2.7) with 

initial conditionyx{O) = x. Fors e R, consider the function 

Yx,s(t) = yx(t + s). 

Differentiation of Yx. shows it also is a solution of the system (2.7), evidently with initial value 
Yx ,(0) = Yx(s). The' uniqueness part of the Existence and Uniqueness Theorem for ordinary 
differential equations [L], [HS], [R], therefore implies that 

{2.8) yx(s + t) = Yx,s(t) = Yy,(s)(t). 

If we then set 

ct>(t, x) = yx(t ), 

we find that identity (2.8) translates into identity (2.4) (ii). Of course, the initial condition 
yx(O) =xis just identity (2.4) (i). It follows that cp1(x) = yx(t) defines a one-parameter group of 
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FIG. I. 

homeomorphisms of Rn. For the system of Fig. 1, the map cp1 is just rotation through an angle oft 
radians. 

In summary, we have seen that a (smooth) one-parameter group of diffeomorphisms of Rn 
yields solutions of a system of differential equations of the form (2. 7), and, conversely, a solution 
(for all time and all x) of system (2.7) yields a one-parameter group. The two constructs, solutions 
of systems of ordinary differential equations, and one-parameter groups, thus provide two 
different points of view on the same mathematical phenomenon. In other words, the notion of 
one-parameter group provides a geometric and global way of looking at the solutions of a system 
of ordinary differential equations. ,As such, it.suggests ways of attacking and obtaining informa­
tion about ordinary differential equations, and it provides a link between systems of ordinary 
differential equations and more complex geometric objects such as the Lie groups and Lie 
algebras discussed in the following sections. 

3. One-Parameter Groups of Linear Transformations 

In this section, we show how one-parameter groups of linear transformations of a vector space 
can be described using the exponential map on matrices. · 

Let V be a finite dimensional real vector space. Let End( V) denote the algebra of linear maps 
from V to itself, and let GL(V) denote the group of invertible linear maps from V to itself. The 
usual name for GL(V) is the general linear group of V. If V =Rn, then End(V) = Mn(R), the 
n X n matrices, and GL(V) = GLn(R), the matrices with nonvanishing determinants. 

Let II II be a norm on V (c.f. [L], [NJ). In the usual way there is induced an operator norm, also 
denoted II II, on End(V). We recall the definition: 

(3.1) llAll =sup{ lll~~i" : v E V - {O}} A E End(V). 

The norm on EndV makes End(V) into a metric space. Since the determinant is a continuous 
function on End(V), we know that GL(V) is an open subset of EndV (see also (3.6) below), so it 
also is a metric space. 

DEFINITION. A one-parameter group of linear transformations of Vis a continuous homomor­
phism 

(3.2) M:R ~ GL(V). 

Thus M(t) is a collection of linear maps such that 

(i) M(O) = Iv, the identity of V, 

(ii) M(s)M(t) = M(s + t) s, t e R, 



608 ROGER HOWE [November 

(iii) M( t) depends continuously on t. 

REMARKS. (a) The topology on GL(V) is easily verified to be a group topology as defined in 1. 
Thus, for A E End V and r > 0, set 

(3.3) 81,(A) ={A' E End V: llA' -All< r }. 

First, the basic formula [N, p. 76], 

(3.4) llABll ~ llAll llBll 

implies that left and right multiplication are continuous. Hence the topology is homogeneous. 
Then the Neumann formula [N, p. 177], 

00 

(3.5) (lv-A)-l= LAn 
n=O 

valid for A with llAll < 1 shows that 

(3.6) 

withs= r/(1 - r). Similarly the formula 

(3.7) (Iv+ A)(lv + B) =Iv+ A + B +AB 

shows 

81,(lv)81s(lv) ~ 81r+s+rs(lv). 

Thus all the conditions of Lemma 3 are checked, and we have a group topology. 
(b)'Furtherm<;>re, it is not diffi9ult to verify that the topology defined by the norm coincides 

with the compact-open topology defined in §1 on GL(V) as a subgroup of Hm(V). This is left as 
an exercise. Hence this definition of one-parameter group is a special case of the definition of §2. 

For A E End V, define 

(3.8) 
oo An 

exp(A) = L - 1 . 
n=O n. 

Since llAnll ~ llAll\ we see, by the standard estimates in the exponential series, that the series 
defining exp A converges absolutely for all A and uniformly on any 81,(0). Hence exp defines a 
smooth, in fact analytic, map from End( V) to itself. We will see shortly that in fact exp A E 

GL(V). 

PROPOSITION 8. If A and B in End V commute with each other, then 

(3.9) exp( A + B) =exp A exp B. 

Proof. Computing formally we have 

( 

00 An)( 00 Bm) 00 AnBm expAexpB = L -, L -, = L 
n=O n. m=O m. n,m=O n!m! 

= f ~( E ( l)AkBl-k)· 
l=O I. k=O k 

If A and B commute, the familiar binomial formula applies and says 
I 

(A+ B)I = L ( l)AkB/-k. 
k=O k 
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Substituting this in our formula for exp A exp B, and noting that all manipulations are valid 
because the series converge absolutely, we see the proposition follows. • 

COROLLARY 9. For any A E End V, the map t-+ exp(tA) is a one-parameter group of linear 
transformations on V. In particular exp A E GL(V) and (exp(A))- 1 = exp(-A). 

Proof. Since for any real numbers s and t the matrices sA and tA commute with one another, 
this corollary follows immediately from Proposition 8. • 

The main result of this section is the converse of Corollary 9. 

'THEOREM 10. Every one-parameter group M of linear transformations of V has the form 

(3.10) M(t) = exp(tA) 

for some A E ·End V. 
The transformation A is called the infinitesimal generator of the group t --+ exp( tA ). The flow 

illustrated in Figure 1 is in fact given by a one-parameter group with infinitesimal generator 

[~ -~]. 
REMARK. Since for v E V we have 

co tnAn(v) 
(exptA)(v) = v + tA(v) + L 1 , 

n=2 n. 

the infinitesimal generator of the one-parameter group M(t) = exp(tA) can be computed by the 
formula 

(3.11) A(v) = lim M(t)(v) - v = !{_(M(t)(v))I . 
1-+0 t dt t=O 

Thus the one-parameter group M(t) is associated by the discussion at the end of §2 to the system 
of differential equations 

(3.12) 
dv 
dt = A(v ). 

These equations are of course basic in the theory of linear systems, which is applied in electrical 
engineering, economics, etc. If we know that M(t)(v) is differentiable, then the existence and 
uniqueness theorem for differential equations implies Theorem 10, but we do not know a priori 
that M(t) is differentiable. The burden of the proof of Theorem 3 is to get around this ignorance, 
thereby establishing that a merely continuous map t--+ M(t) satisfying the group law (3.2) (ii) is 
in fact analytic. This is a recurrent theme in Lie theory, and is also expressed in the main theorem 
(Theorem 17) of this paper. It found its ultimate expression in Hilbert's 5th Problem: to show that 
if a topological group is locally (i.e., a neighborhood of every point is) homeomorphic to 
Euclidean space, then the group is in fact an analytic manifold with analytic group law (a Lie 
group). This problem was resolved positively in the early 1950's by A. Gleason [G]. See also [Ka], 
[MZ]. 

We take up now the proof of Theorem 10. It will require some preliminary results. 
Let ~,(A) be the open ball of radius r around A, as defined in formula (3.3). 

PROPOSITION 11. For sufficiently small r > 0, the map exp takes ~,(O) bijectively onto an open 
neighborhood of lv in GL(V). One has exp(~,(O)) ~ ~.(lv) wheres= e' - 1. 

Proof. Let DexpA be the differential of exp at A. It is a linear map from End(V) to End(V) 
defined.by 

D (B) _ li exp(A + tB) - exp A 
expA - m . 

1-+0 t 

From the definition (3.8) of exp, it is easy to compute that 

Dexp0 (B) = B. 
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That is Dexp0 is the identity map on End(V). In particular Dexp0 is invertible. Therefore the first 
statement of the proposition follows from the Inverse Function Theorem [L], [R]. The inclusion 
exp(t?lr(O)) ~ 8'5 (lv) follows from the obvious termwise estimation of exp(A) - lv. • 

REMARK. If one defines 

(3.13) 

then just as for real numbers, one sees this series converges absolutely for llAll < 1. Further, for all 
B E 8'1 (lv) one has 

(3.14) exp(log B) = B. 

Formula (3.14) is known in the scalar case, and this implies that in fact (3.14) is an identity in 
absolutely convergent power series, whence it follows in the matrix case. The formulas (3.13) and 
(3.14) allow an alternate proof of Proposition 11 which avoids appeal to the Inverse Function 
Theorem and gives the explicit estimate that exp is 1-1on8'10g 2 (0). However, this explicit value of 
r is not needed, and we need in any case to appeal to the Inverse Function Theorem below in 
Theorem 17, so this more explicit proof of Proposition 11 gives us no particular benefit. 

PROPOSITION 12. Choose an r < log 2, and let T be in exp t?lr(O), say T = exp A. Then the 
transformation S = exp(A/2) is a square root of T; that is, S 2 = T. Moreover, S is the unique 
square root of T contained in exp t?lr(O). 

Proof. That S 2 = T follows directly from Proposition 8. It is only necessary to prove the 
uniqueness of S. From Proposition 11, we see that our restriction on r implies exp t?lr(O) ~ 8'1 (lv ). 
Hence it will suffice to show that if A, B are distinct linear maps of norm less than 1, then 
(lv + A) 2 f (lv + B) 2 • Suppose the contrary. Then expanding the squares, cancelling the lv's 
and transposing, we find the equation 

2(A - B) = B 2 -A2 = B(B - A) +(B -A)A. 

Taking norms yields 

211A - Bii ~ llBll llB - All+ llB - All llAll = (llBll + llAll)llB - All. 

This implies either llA - Bii = 0, which· is false since A f B, or llAll + llBll ;;:i, 2, which is false 
since both llAll and llBll are less than 1. This contradiction ~stablishes the uniqueness of S. • 

Proof of Theorem 10. Let t-+ M(t) be a continuous one-parameter group in GL(V). Since 
M(O) = lv, if we specify r > 0, we may by continuity and Proposition 11 find an e > 0 such that 
M(t) E exp(t?lr(O)) for ltl ~ e. We taker< log2. Write 

M(e) = expA1 

for appropriate A1 E t?lr(O). If we set 

then M(e) = exp(eA). The transformations M(e/2) and exp((e/2)A) are then both square roots 
of M(t) lying in exp(t?lr(O)). By Proposition 12 we conclude 

M(e/2) = exp((e/2)A). 

An obvious induction using Proposition 12 shows that 

M(rne) = exp(2-neA) 

for all positive integers n. Taking mth powers, we conclude 

M(m2-ne) = exp(m2-n EA) 
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for all integers m and n. Since the numbers m2-ne are dense in IR, Theorem 10 follows by 
continuity. • 

4. Properties of the Exponential Map 

The map exp is the basic link between the linear structure on End V and the multiplicative 
structure on GL( V). We will describe some salient properties of this link. 

Choose r with 0 < r ~ 1/2 such that exp is one-to-one on Bl,(O). Choose r1 < r so that if 
A, B E Bl,1 (0), then exp A exp B is contained in exp Bl,(O). Then we can write 

(4.1) exp A exp B =exp C 

for some C E Bl,(O). The Inverse Function Theorem guarantees that C is a smooth (in fact 
analytic) function of A and B. There is a beautiful formula, the Campbell-Hausdorff formula [Jl], 
[Se], which expresses Casa universal power series in A and B. To develop this completely would 
take too long. We will just give the first two terms in the expression for C. These suffice for most 
purposes. 

For A, BE End V, write 

(4.2) [A , B) = AB - BA. 

The quantity [A, B] is called the commutator of A and B, and will be seen later to provide the Lie 
bracket operation in the Lie algebras we construct. 

PROPOSITION 13. Suppose A, B, C have norm at most 1/2 and satisfy equation (4.1). Then we 
have 

(4.3) 
1 

C=A +B+2[A,B]+S, 

where the remainder term S satisfies 

(4.4) 

Proof. We have 

(4.5) 

where the remainder R1 ( C) is 

and satisfies the obvious estimate 

llR1 ( C)ll ~ 1iC2 1i( n~z llC~;- 2 ) ~ llCll 2 

when llCll ~ 1, hence certainly when llCll ~ 1/2. 
Similarly we have 

(4.6) exp A expB = lv +A+ B + R 1(A, B), 

where by rearrangement of the double sum 

R 1(A, B) = n~2 :! C~o (~)AkBn-k )· 

Hence we have the estimate 
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when llAll + llBll ~ 1. 
Comparing equations (4.5) and (4.6), we see that equation (4.1) implies 

(4.7) C=A + B + R1(A,B)-R1(C). 

Hence 

llCll ~ llAll + llBll +(llAll + llBll)2 + llCll 2 ~ 2(11All + llBll) + ~llCll 
when A, B and C all have norm at most t. 
Thus 

(4.8) llCll ~ 4(11All + llBll). 

Returning to equation ( 4. 7), we further find 

[November 

(4.9) llC-(A + B)ll ~ llR1(A, B)ll + llR1(C)ll ~ (llAll + llBll)2 +(4(11All + llBll))2 

= 17(11All + llBll)2• 

We now refine these estimates to second order. In analogy with (4.5) we have 

c2 
(4.10) expC = lv + C + 2 + R 2 (C), 

where 

is easily estimated by 

(4.11) 

when llCll ~ 1. 
If we substitute expression (4.3) for C in equation (4.10), we obtain 

1 1 
(4.12) exp C = lv +A+ B + 2[A, B] + S + 2C2 + R 2 (C) 

1 1 ( 2 = lv +A+ B. + 2[A, B] + 2 A+ B) + T 

= lv +A+ B + I(A2 + 2AB + B 2) + T, 

where 

On the other hand, we have 

1 
(4.13) exp A exp B = lv +A+ B + 2(A2 + 2AB + B 2) + R 2(A, B), 

where 

R 2(A, B) = f 1, ( f (n)AkBn-k) 
n=3 n. k=O k 

satisfies llR 2 (A, B)ll ~ ~(llAll + llBID 3 when llAll + llBll ~ 1. 
Comparison of (4.12) and (4.13) in the light of (4.1) yields 

s = R2(A, B) + I((A + B)2 - c 2 ) - R 2 (c). 
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Taking norms, we find 

llSll ~ llR2(A, B)ll + ~(ll(A + B)(A + B - C) +(A+ B - C)Cll) + llR 2( C)ll 

~ ~(llAll + llBll)3 + ~(llAll + llBll + llCll)llA + B - Cll + ~llCll 3 

~ ~(llAll + llBll)3 + i(llAll + llBll) · 17(11All + llBll)2 + ~(4(11All + llBll))3 

~ 65(11All + llBll)3, 

as was to be shown. 

613 

We will derive two main consequences of Proposition 13. These relate group operations in 
GL(V) to the linear operations in End(V), and are crucial ingredients in the proof of the main 
theorem (Theorem 17 in §5) that relates Lie algebras to Lie groups. Proposition 14 relates group 
multiplication in GL(V) to addition in End(V), and Proposition 15 relates the group commutator 
operation to the bilinear commutator bracket defined in equation (4.2). 

PROPOSITION 14 (Trotter Product Formula). For A, BE End V, one has 

(4.14) exp(A + B) = lim {exp(A/n)exp(B/n))n. 
n->oo 

Proof. For n large enough, A/n and B/n will be close enough to the origin that formula (4.3) 
applies. We then have 

exp(A/n)exp(B/n) = expCn, 

where by estimate (4.9) , 
llCn -(A + B)/nll ~ 17{(11All + llBll)/n )2. 

Hence as n -+ oo, we see that nCn -+A + B. Since exp nCn = (exp Cn)n, equation (4.14) fol­
lows.• 

Recall that the (linear) commutator [A, B] is defined in equation (4.2). Recall also that if g, h 
are elements of a group, then the group commutator of g and h, written (g: h ), is the expression 

(g: h) = ghg- 1h- 1• 

PROPOSITION 15 (Commutator formula). For A, Be End V, one has 

(4.15) exp[A, B] = lim {exp(A/n)exp(B/n)exp(-A/n)exp(-B/n)) 
n2 

n->oo 

= lim {(exp(A/n) :exp(B/n)Y2
• 

n->oo 

Proof. As in Proposition 14, for large n we have 

exp(A/n)exp(B/n) =exp Cn =exp( (A+ B)/n + ~ [A~2B] +Sn). 

where 

Similarly 

exp(-A/n)exp(-B/n) = exp(-(A + B)/n + (~)[A::] + S~) =exp C~ 
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with also 

llS~ll ~ 65 (llAll +3llBll) 3 

n 

Hence 

(exp(A/n): exp(B/n)) =Exp en exp e~ =Exp En, 

where 

En = en + e~ + ~ [en, e~] + Tn 

[A ' B] 1 [ c C' ] I T. = n2 + l n' n +Sn + Sn + n' 

where T,, is the term Sin equation (4.3) if A = en and B = e~. 
It will suffice to show that there is a number y, depending on A and B, such that 

ll
E - [A, B] II~ .l 

n n2 "" n3 . 

For then 

(exp En) n2 = exp([ A, B] + U,,) 

with llUnll ~ y/n, and equation (4.15) follows. In turn, it will suffice to show that the 2nd, 3rd, 4th 
and 5th terms in the expression for En are each less than a constant times n- 3• For Sn, S~ and Tn, 
this follows from Proposition 13. Tqus we need only worry about [en, e~]. We compute 

[en, e~] =[.!(A+ B) +~[A, B] +Sn, -l (A+ B) +~[A, B] + s~] 
n 2n n 2n 

=~[A+ B, [A, B]] +_![A+ B, Sn+ S~] +~[[A, B], S~ - Sn] 
n n 2n 

+[Sn,S~]. 

Using Proposition 13, we see that each of the four terms in this last sum is bounded by a constant 
times n- 3• (In fact, all terms except the first are bounded by a constant times n- 4 ). 

There is one further concept involving the exponential map that is basic to Lie theory. It 
involves conjugation, which is generally referred to as the "adjoin* action." For g E GL(V) and 
T E End V, we can form the conjugate 

(4.16) Adg(A) = gAg- 1 • 

The following proposition is easily verified and left as an exercise. 

PROPOSITION 16. (i) Adg(aA + bB) = aAdg(A) + bAdg(B) for A, BE End V; a, b E ~; 
and g E GL(V). 

(ii) Adg(AB) = Adg(A)Adg(B). 

(iii) Adg1g2 (A) = Adg1 (Adg2 (A)). 

Formulas (i) and (ii) say Adg is an algebra automorphism of End V, and Formula (iii) says the 
map Ad:g-+ Adg is a group homomorphism from GL(V) to the automorphism group of 
End(V). The map Ad is called the adjoint action of GL(V) on End(V). 

Formula (iii) implies in particular that if exp tA is a one-parameter subgroup of GL(V), then 
Ad exp tA is a one-parameter group of linear transformations on End V. Hence Ad exp tA has 
infinitesimal generator .JJI E End(End V). We can compute .Jllby the formula 
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..#(B) = lim (exp tA)B(exp(-tA)) - B 
t->O t 

d 
= dt (exp tA)B(exp( - tA ))lr=o 

= (A(exp tA)B(exp - tA) +(exp tA)B( -A)(exp - tA))li=o 

=AB - BA =[A, B]. 

Here we have used the fact that 

d 
dt (exp(tA)) =A exp(tA). 

This formula may be verified by direct calculation from the definition of exp( tA ). Hence if we 
define 

adA : End V ~ End V 

by 

adA(B) = [A, B], 

we have the following formula. 

PROPOSITION 17. For A E End v 
(4.17) Ad(expA) = exp(adA). 

5. The Lie Algebra of a Matrix Group 

By a matrix group we mean a closed subgroup of GL(V) for some vector space V. This section 
shows a matrix group is a Lie group. What that means is expressed in Theorem 17. Most, though 
not all, Lie groups can be realized as matrix groups. This article discusses only matrix groups. 

ExAMPLES. (i) GL(V) itself. 

(ii) SLn(IR), the special linear group, of n X n matrices of determinant 1. 
(iii) Op,q• the "pseudo-orthogonal groups," consisting of all matrices in GLp+q(IR) that 

preserve the indefinite inner product 
p p+q 

(x, x')p,q = L X;x; - L x;x;, x, x'E !RP+q. 
i=l i=p+l 

(iv) SP2 n(IR), the real symplectic group, consisting of all matrices in SL 2 n(IR) that preserve 
the skew-symmetric bilinear form 

n 

< ') "' / 1 1 E IR 2n X, X = £..., X;X;+n - X;X;+nX, X . 
i=l 

(v) The group P(U) of transformations that preserve a subspace U of V. For instance, if 
V =!Rn, and Um= !Rm= {(x1, x 2 ,. .. ,Xm,0,0, ... ,0)}, where m <:;;; n, then 

P(Um) = {[ ~ ;] : A E GLm(IR), BE GLn-m(IR), x E Mm,n-m(IR) }· 

Here Mm,n-m(IR) is the space of m X (n - m) real matrices. 
(vi) Any intersection of matrix groups is a, matrix group. For instance, the intersection 

n ::,= 1P(Um) of the groups P(Um) of example (v) is the group of invertible upper 
triangular matrices. 

(vii) The group preserving some closed subgroup, not necessarily a subspace, of V. For 
example, let "IL. n ~ IR n be the discrete subgroup of vectors with integral entries. Set 
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GLn(Z) ={A E GLn(IR): A(zn) = zn}. 

Then GLn(Z) can also be shown to consist of matrices with integer entries and 
determinant ± 1. 

(viii) The group commuting with some family { 1';} of operators on Vis a matrix group. For 
example, we can identify C n with IR Zn by letting x 21 _ 1 and x 21 be the real and imaginary 
parts of the coordinate z1 of Z = (z1, Zz, ••• ,zn) E Cn. If we do SO, the Operation Of 
multiplication by a complex scalar becomes some (real) linear operator on IR Zn. Further, 
the group GLn(C) becomes identified with the subgroup of GL 2 n(IR) formed by 
elements which commute with the multiplications by complex scalars. 

(ix) If G; is a matrix group in GL(V;), i = 1, 2, then G1 x G2 is a matrix group in 
GL(V1 e V2 ) in the obvious way. 

(x) If G is a matrix group, then G0 , the connected component of the identity in G, is a 
matrix group. 

(xi) The normalizer in GL(V) of a matrix group is a matrix group. 

The main result of this section is the essential phenomenon behind Lie theory: a matrix group 
has naturally attached to it a Lie algebra. Before showing this we recall what a Lie algebra is. 

DEFINITION. A real Lie algebra g is a real vector space equipped with a product 

(5.1) (,]:gXg-+g 

satisfying the identities 

(5.2) 

(i) (Bilinearity). For a, b E IR and x, y, z E g, 

[ax+ by, z] = a[x, z] + b[y, z] 

(ii) 

[z, ax+ by]= a[z, x] + b[z, y]. 

(Skew symmetry). For x, y E g, 

[x, y] = -[y, x]. 

(iii) (Jacobi Identity). For x, y, z E g, 

[x,[y, z]] + [z,[x, y]] + [y,[z, x]] = 0. 

The first main example of a Lie algebra is End V equipped with the bracket operation [,] of 
commutator, as given in equation (4.2). It is left as an exercise to verify that this satisfies the 
correct identities. Any subspace of End V which is closed under [,] will become a Lie algebra in its 
own right. Since our main theorem will provide us with such a subspace for each matrix group, we 
will postpone a more explicit discussion of examples. 

Consider a matrix group G ~ GL(V). Let exp- 1(G) ~End Vbe the inverse image of Gunder 
exp. Since exp(nA) = (expA)n, it is clear that exp- 1(G) is closed under scalar multiplication by 
integers. Set 

g = {A E End V: exp tA E G for all t E IR} = n t exp - l ( G). 
tEIRx 

Observe that g is the collection of infinitesimal generators of one-parameter subgroups of G. We 
call g the Lie algebra of G. 

THEOREM 17. (a) The Lie algebra g of a matrix group G is a Lie algebra. 
(b) The map exp : g -+ G maps a neighborhood of 0 in g bijectively onto a neighborhood of 1 v 

in G. 

REMARKS. (i) Part (b) of Theorem 17 implies G is locally homeomorphic to Euclidean space. In 
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fact it is not hard to refine part (b) and show that G has the structure of a smooth manifold, such 
that the group multiplication is smooth, but we will not do that here. 

(ii) Theorem 17 provides a geometric picture of the relation between g and G. If a one-parame­
ter group exp( tA) is regarded as a curve inside the vector space End V, then this curve passes 
through the identity lv at time t = 0. By differentiating the formula for exp tA, we see the tangent 
vector at the point lv to this curve is just A. Thus, as we have defined it, g consists simply of all 
tangent vectors to the curves defined by one-parameter groups in G. But Theorem 17 asserts that 
these tangent vectors actually fill out some linear subspace (namely g) of End V, and further, if we 
make the smooth change of coordinates A ->exp A, then this linear subspace g is bent in such a 
way that it lies entirely in G, and fills up G around lv. In other words, G is shown to be a smooth 
multidimensional surface inside End V, and g is simply its tangent space at the point lv. 

The main burden of the proof of Theorem 17 is carried by the following technical result. 

LEMMA 18. Suppose {An} is a sequence in exp- 1(G), and llAnll-> 0. Let sn be a sequence of real 
numbers. Then any cluster point of snAn is in g. 

Proof. Let B be the cluster point. By passing to a subsequence if necessary we may assume that 
snAn converges to B. Fix a number t e ~- Let mn be an integer such that lmn - tsnl ~ 1. Then 
mnAn converges to tB; for we have 

llmnAn - tBjj = ll(mn - tsn)An + t(snAn - B)ll 

~ lmn - tsnl llAnll + !ti llsnAn - Bii 
~ llAnll + jtj llsnAn - Bii 

which converges to zero as n-> oo, by our assumptions on An and B. Since mnAn e exp- 1(G), 
and exp-1(G) is closed, we see that tB e exp- 1(G). Since twas arbitrary in ~, we see that 
BE g.• 

Proof of Theorem 17. We first show g is a subspace of End V. Since g is by definition closed 
under scalar multiplication, we need only show it is closed under addition. Take A, B e g. Then 
as in Proposition 14 we know that for large enough n 

exp(A/n)exp(B/n) = expCn, 

where llCnll -> 0, and nCn ->A + B. Hence Lemma 18 implies A + B e g. 
Next we show that if A, Beg, then also [A, B] e g. As in Proposition 15 we know that for 

large n we have 

(exp(A/n) :exp(B/n)) =exp En 

with En-> 0 and n 2En-> [A, B]. Another application of Lemma 18 says [A, B] e g. This 
concludes part (a) of Theorem 17. 

We know g is a linear subspace of End(V). Let Y ~ End(V) be a complementary subspace of 
g, so that End V = g EB Y. Let p 1 and p 2 be the projections of End V on g and Y, respectively, 
with respective kernels Y and g. Define a map E: End V-> GL(V) by 

E(A) = exp(p1 (A))exp(P2(A)). 

By use of Proposition 13, we can compute that 

d 
dt (exp(p1 (tA))exp(Pi(tA)))j1= 0 = p 1(A) + p 2 (A) =A. 

This says that the differential of E at 0 is the identity map on End V, so that E takes small 
neighborhoods of Oto neighborhoods of Iv bijectively, by the Inverse Function Theorem. Choose 
a small ball 81,(0) ~End V, and suppose exp(.91,(0) n g) does not cover a neighborhood of lvin 
G. Then we can find a sequence Bn e exp- 1(G) such that Bn-> 0, but Bn fl:. g. When Bn is close 
enough to 0, we may write 
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for some Aw We will have An-> 0 as Bn-> 0. Then 

exp(p2 (AnJ) = exp(p1 (An))- 1 expBn 

is also in G, and is nonzero by our assumption on Bn. Since An -> 0, p 2(An)-> 0 also. The 
sequence llp2 (An)il- 1p 2 (An) will have cluster points, and these must being by Lemma 18. On the 
other hand, p 2 (An) E Y, so all cluster points must be in Y. This contradicts the fact that Y was 
chosen complementary to g, so statement (b) of Theorem 17 follows. • 

ExAMPLES. We will describe below the Lie algebras of some of the groups listed at the 
beginning of this section. The verification that the indicated Lie algebras are indeed the Lie 
algebras of the stated groups is left as an exercise. 

(i) The Lie algebra of GL(V) is of course End(V). 
(ii) The Lie algebra of SLn(IR) is the space of sln(IR) of n X n matrices of trace zero. 

(iii) Let f3 be a bilinear form on V. The isometry group of f3 is the group of invertible operators 
A such that 

/3(Au, Av)= f3(u, v) for all u,v EV. 

The Lie algebra of this group is the space of operators B such that 

f3 (Bu, v) + f3 ( u, Bv) = 0. 

In particular the Lie algebra on(V) of the orthogonal group On(IR) of isometries of the 
standard inner product on IR n is the space of skew-symmetric matrices. 

(iv) The Lie algebra of the subgroup of GL( V) of maps commuting with given operators { T;} 
is the subalgebra of End V commuting with the T;. 

(v) The Lie algebra of the group P( { v;}) of invertible transformations which preserve each 
of the subspaces v; of Vis' the subalgebra of all transformations which preserve the v;. In 
particular, the Lie algebra of the group of invertible upper triangular matrices is the 
vector space of all upper triangular matrices. 

(vi) The Lie algebra of G1 n G2 , for matrix groups G;, is g1 n g 2 . 

(vii) A matrix group G and its identity component G0 have the same Lie algebra. 

After its existence, the second most important feature of g is that it is natural (in the sense of 
category theory). This is the content of our next theorem. 

Let g , fJ , be real Lie algebras. A homomorphism from g to fJ is a linear map 

L:g-+f) 

satisfying 

(5.3) L((x, y]) = (Lx, Ly] x,y E g. 

Let V, U be real vector spaces. 

THEOREM 19. Let G ~ GL(V) be a matrix group with Lie algebra g. Let q,: G-> GL(U) be a 
continuous homomorphism. Then there is a homomorphism of Lie algebras 

(5.4) dq, : g -> End U 

such that 

(5.5) exp(dq,(A)) = q,(expA). 

Proof. If A E g, then exp tA is a one-parameter subgroup of G, so 'f>(exp(tA)) is a one-parame­
ter subgroup of q,(G) ~ GL(U). Hence by Theorem 10 we may write 'f>(exp(tA)) = exp(tB) for 
some B E End U. If we define 

dq,(A) = B, 
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then equation (5.5) will obviously be satisfied. To prove this theorem, it suffices to show that def> is 
a homomorphism of Lie algebras. But this follows directly from Propositions 14 and 15 which 
show that the Lie algebra operations in 9 are determined by operations in G. 

ExAMPLE. The formula (4.17) shows that 9 is an invariant subspace of End V under the 
operators Adg, g E G. The restriction of Adg to 9 is again denoted by Adg, and the resulting 
action of G on 9 is still called the adjoint action. In terms of Theorem 19, the formula (4.17) has 
the interpretation 

(5.6) d(Ad) =ad. 

An immediate consequence of Theorem 19 is: 

COROLLARY 20. If G1 ~ GL(V) and G2 ~ GL(U) are isomorphic matrix groups, then their Lie 
algebras 91 and 9 2 are isomorphic as Lie algebras. 

Proof. Let cf>: G1 -> G2 be a continuous isomorphism with continuous inverse cp- 1. Then in 
particular cf> is a continuous homomorphism from G1 to GL(U), and cp- 1 is a continuous 
homomorphism from G2 to GL(V). Theorem 19 therefore provides us with associated Lie algebra 
homomorphisms d cf> and d (cf> - l ). It follows from the definition of the Lie algebra of a matrix 
group and formula (5.5) that in fact dcp(91) ~ 92 , and similarly d(cp- 1)(9 2 ) ~ 91. It further 
follows from formula (5.5) that since cp- 1 0 cf> is the identity on G1, then also d( cp- 1) 0 def> is the 
identity on 91. In other words d( cp- 1) =(def> )- 1, so def> is in fact a Lie algebra isomorphism from 
91 to 92· • 

The converse of Corollary 20, that groups with isomorphic Lie algebras are isomorphic, is false. 
For example the rotation group 

SO = {[c~sO 
2 smO 

and the diagonal group 

-sinO]: 0 E IR} 
cosO 

both have Lie algebra isomorphic to IR, but S02 is homeomorphic to a circle, while D1 is 
homeomorphic to IR, so they are certainly not isomorphic. 

However, the converse of Corollary 20 is in a sense almost true, so that the bracket operation 
on 9 almost determines G as a group. After the existence of the Lie aigebra, this fact is the most 
remarkable in Lie theory. Its precise formulation is known as Lie's Third Theorem. It is in proving 
a suitable version of Lie's Third Theorem that Lie theory begins to get involved, so we will leave 
the story here. Precise treatments of these issues can be found in [A], [Ch], [He], [Se]. 

6. Loose Ends and Further Developments 

In §§3, 4, and 5 we have shown that to each matrix group G, there is associated in a close and 
natural way, a Lie algebra 9, the two being connected via one parameter groups and the 
exponential map. These facts constitute an important part of the foundations of Lie theory. We 
will describe briefly what we have omitted from the standard account. 

First, we have not treated Lie groups as abstract things-in-themselves, but have only dealt with 
them as subgroups of a standard group, GL(V). We could not have discussed abstract Lie groups 
without assuming the standard language of differentiable manifolds. Our approach allowed us to 
bring to the fore the remarkable Theorem 17, which asserts that merely the requirements of being 
closed and being a group inside GL(V) (or any Lie group) suffices to make the group a smooth 
manifold. This indicates what a strong regularity condition the group property is. Research over 
the past decades have continued to underscore this theme [BT], [Ma], [Mo]. 
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Second, we have not demonstrated how complete and mutual is the relationship between Lie 
groups G and their Lie algebras g. It is in this direction that the principal technical complications 
of the theory lie. For example, although we have shown how to attach a Lie algebra to every 
matrix group, we have not tried to attach a group to every Lie subalgebra of End V. Indeed, this is 
not possible if one sticks to matrix groups; the one parameter groups obtained by exponentiating 
elements in a given Lie algebra g will generate a group which in a suitable sense has g as its Lie 
algebra but this group will not always be closed in GL(V). The simplest example is probably the 
one-parameter group exp tAx in GL 4 (1R), where 

-1 r 
0 

Ax= g 
1 
0 
0 
0 

0 
0 
0 

-x 
and x is any irrational number. Also the question of the relation of two matrix groups which have 
isomorphic Lie algebras, essentially the question of the converse of Corollary 20, involves the 
notion of covering space and fundamental group [Ms] and is beyond the scope of this discussion. 
Interestingly enough, both these questions are most vexed for the most simple-minded case: 
abelian Lie groups and their Lie algebras. We close these brief remarks by pointing out that, when 
G is fairly nonabelian, especially if the center of G is discrete, the existence of the adjoint action 
and formula (5.6) in particular go a long way toward showing that G is nearly determined by g. 
After the foundations comes the rather extensive development of the structure theory of Lie 
algebras, with direct consequences for the groups. Several fine accounts of the theory of Lie 
algebras are available, for example [J], [Hu]. Beyond the theory of Lie groups and algebras in 
themselves lies the vast domain of their applications. We have mentioned a few of these in the 
introduction and in §7. Some representative references for applications are [BC], [HP], [Hr], [Ko], 
[Lo]. 

Our treatment in §§3, 4, 5 has been concrete in that we worked only inside End V, but it was 
also abstract in that it was coordinate free. We record here some common terminology used when 
bases are introduced. Let g c;;::: End V be a Lie subalgebra. Let { Y;}, 1 ~ i ~ dim g be a basis for g. 
Then the fact that g is a Lie algebra amounts to the statement that the commutators [y;, yj] are 
again linear combinations of the Yk's. Thus we have equations 

(6.1) [y;. yj] = ~:,Ctyk, 

where the ct are real numbers. The equations (6.1) are called the commutation relations of the y;'s 
and the ct are called the structure constants of g with respect to the Y;· 

For example, set 

g], h=[~ -~l· 
The matrices e+, e-, and h form a basis for sl 2 , the 2 x 2 traceless matrices, one of the most 

fundamental Lie algebras. It is easy to compute that their commutation relations are 

7. Relations with the Standard Curriculum 

In this section we give some examples of how Lie theory makes contact with current staples of 
undergraduate mathematics. We must of course be very restrictive and brief. 

1. Many of the standard theorems of linear algebra are of course also part of the fabric of Lie 
theory, and gain coherence when considered in that light. For example, several of the standard 
canonical forms, e.g., Jordan form, the diagonalization of the (skew) Hermitian matrices, amount 
to classification of the conjugacy classes (orbits under the adjoint action) in a Lie algebra. Jordan 
form describes conjugacy classes in End(C n) - gln(C), and diagonalization of Hermitian matrices 
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describes conjugacy classes in Un, then X n unitary group. We cannot explain this interpretation 
of these results in detail, but encourage the reader to explore it by further reading. 

Also, SLn(IR) or SLn(C) are examples of an extremely important class of Lie groups called 
semisimple groups, and several well-known results in linear algebra are special cases for SLn(IR) or 
SLn(C) of structure theorems for semisimple groups. (Since GLn and SLn are so similar, we state 
the results for GLn.) The polar decomposition or singular value decomposition [St] says that any 
A e GLn(IR) may be written in the form 

A= OS= 0 1D02 , 

where 0, 0 1, and 0 2 are orthogonal matrices, Sis symmetric, and Dis diagonal with positive 
entries. This is the specialization to GLn(IR) of what is known as the Cartan decomposition [He] in 
the context of semisimple Lie groups. Also, the Gram-Schmidt orthonormalization procedure [St] 
says, in group-theoretical terms, that any A e GLn(IR) may be written in the form 

A= OB= ODU, 
where 0 is orthogonal, B is upper triangular, D is diagonal with positive entries, and U is upper 
triangular with diagonal entries all equal to 1. For general semisimple groups, this is known as the 
Iwasawa decomposition [He]. 

Various basic features in the elimination theory, including the "LU factorization" [St] of a 
generic matrix into the product of an upper triangular and a lower triangular matrix, and the 
"reduced row-echelon form" [DN] are aspects of a different kind of decomposition of semisimple 
groups, known as the Bruhat decomposition [Bo]. 

2. The cross product on IR 3 defines a Lie algebra structure on IR 3• This is in fact isomorphic to 
o 3 , the Lie algebra of 0 3 , the 3 X 3 skew symmetric matrices. The isomorphism is accomplished 
by 

, [o 
(x,y,z)-+ ; 

-x 
0 
z 

-yi -z . 
0 

The generalization of this correspondence to higher dimensions leads to the theory of spinors and 
Clifford algebras [J2]. 

3. The fact that second mixed partial derivatives are equal is a reflection of the fact that IR n is 
an abelian Lie group. 

4. The theory of Fourier series and Fourier transform is best understood group-theoretically. 
See [Gr] for a discussion. 

5. It is fairly routine in quantum mechanics courses, in conjunction with the SchrOdinger 
equation for the hydrogen atom and angular momentum, to introduce, "raising and lowering 
operators" [Me]. The operators belong to the complexification of o3 , which is isomorphic to 
sl 2(C). The commutation relations of the Lie algebra figure importantly in the computations. The 
harmonic oscillator is also susceptible to a Lie-theoretic treatment. The Canonical Commutation 
Relations themselves are the laws for a bracket relation on a Lie algebra, known as the Heisenberg 
Lie algebra [Ca], [Ho]. The relations of this algebra with quantum mechanics, and physics 
generally, is deep and extensive. 

6. Perhaps the part of standard undergraduate mathematics that is pedagogically most 
compatible with Lie theory is differential equations. We have already discussed in §2 how the 
notion of one-parameter group is a geometrization of the solution of a system of differential 
equations. And in §3 we noted that one-parameter groups of linear transformations were 
associated with the very important class of linear, constant coefficient systems. Indeed, the 
exponential map and linear algebra techniques are often explicitly used in treating these systems 
[Br]. 
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Many of the important classical differential equations are related with Lie theory. Indeed much 
of the theory of special functions may be considered a branch of Lie theory [Mi], [V]. Below I 
state, always by way of example, some exercises which I have given to students in differential 
equations courses and which were favorably received. 

A.(i) Let P, Q and the identity operator I span a Lie algebra, with commutation relations 
[P, Q] =I, and of course [P, I]= [Q, I]= 0. (These are the Canonical Commutation Relations.) 
Define L = (P - I)QP, and An= (P - I)nQn (so L = A1P). Show that 

(a) [Q,(P-1r] = -n(P-1r- 1 , 

(b) An+i = (A1 + n)An, 

(c) [L,A1]=L-A1 ,and 

(d) L(A1 + n) = (A1 + n)L +(L + n)-(A1 + n). 

(ii) Suppose vn is an eigenvector for L, with eigenvalue - n, so that ( L + n) vn = 0. Show from 
(d) above that (A1 + n)vn is an eigenvector for L, with eigenvalue -(n + 1). Conclude from (b) 
that if v0 is an eigenvector of L with eigenvalue 0, then Anvo = vn is an eigenvector with eigenvalue 
-n. 

(iii) Show that if P = d/dx and Q =multiplication by x, then P and Q satisfy the relations 
above. Show also that 

ex~ e-x = P - I. 

Conclude that a solution to the Laguerre equation zy" + (1 - z)y' + ny = 0 is 

ex(!) n ( e-xxn) = (P - I) nQn(l); 

here 1 is the constant function on IR. 
B.(i) Take P, Q and I as in A(i). Suppose Pv0 = 0, and set vn = Qn(v0 ). Show inductively that 

Pvn = nvn-l· Conclude that vn is an eigenvector of eigenvalue n for QP. 

(ii) Put P = d/dx, Q = (d/dx) + x. Verify that these satisfy the correct commutation rela­
tions, and show that 

Q -x 2/2 d x 2/2 
=e dxe . 

Show that solutions of Hennite's equationy" + xy' - ny = 0 are given by 

y = e-x212( 1x r ex2/2 = Qn(l). 

In addition to Rodrigues-type formulas such as the above, one can deduce in a purely formal 
manner recursion relations and other properties of the Hennite, Laguerre, Legendre, Bessel, and 
many other classical families of functions. 

I would like to thank Kenneth Gross for painstaking efforts to improve the readability of this paper. 
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