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The ancient Greeks divided the field of mathematics into two main divisions:
arithmetic and geometry. Arithmetic was the theory of numbers and geometry the
theory of space and itsparts. By “numbers” (arithmoi), the Greeks meant only the
positive integers, what we call the counting numbers. Numbers could be added and
multiplied, and a smaller number could be subtracted from a larger. Zero was not a
number, nor was there any notion of anegative number. One number could not
always be divided by another, since there were no “fractional” numbers. The
arithmetic unit, the one, was considered completely indivisible and partless. As
Socrates says of arithmetic:

It leads the soul forcibly upward, and compels it to discuss the
numbers themselves, never permitting anyone to propose for
discussion numbers attached to visible or tangible bodies. You know
what those who are clever in these matters are like. If, in the course
of the argument, someone triesto divide the one itself, they laugh
and won’t permit it. If you divide it, they multiply it, taking care that
one thing never be found to be many parts rather than one.?

The subject matter of geometry included points, (straight) lines, curves, plane
figures, solids, etc. Lines, plane figures and solids were instances of magnitudes.
In contrast to numbers, magnitudes were taken to be infinitely divisible: a
magnitude could always be divided in half, or into any number of equal or unequal
parts. The prime examples of magnitudes were straight lines. Lines could be added to
one another, and a shorter subtracted from a longer, but the only operation
analogous to multiplication does not vyield another line: it yields the rectangle
that has the two lines as sides. Since spaceis three-dimensional, three lines can
be “multiplied” to form a solid (a rectangular prism), but no similar construction
would correspond to “multiplying” four lines. This contrasts with the multiplication of

numbers, since the product of two numbers is another number of exactly the same
kind.

Magnitudes and numbers, then, had rather little in common for the Greeks. With
respect to divisibility, one might even contend that they were fundamentally
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opposed in their natures. Since numbers and magnitudes could both be added, and
the smaller subtracted from the larger, certain principles applied to both fields. That is
why the axioms of Euclid’s Elements include propositions such as “equals added to
equals are equals”: the axioms were principles that governed both geometry and
arithmetic, while the postulates were properly geometrical.

A more interesting commonality between arithmetic and geometry is provided by
Eudoxus’ theory of proportion. Numbers stand in ratios to one another, and magnitudes
of the same kind (such as straight lines)stand in ratios to one another, and a
pair of numbers can stand in exactly the same ratio to one another as a pair of lines
do. The theory of proportions is presented in Book V of the Elements. Since both
numbers and magnitudes can stand in ratios, we begin to see how one might
naturally use numbers to represent magnitudes (or magnitudes to represent numbers).
We might, for example, be able associate numbers to lines in such a way that the
lines stand in exactly the same ratio to one another as their associated numbers
do. If there is one way to do this, there are many (for example, doubling all the
numbers leaves their ratios unchanged, so the doubled numbers would do as
well as the originals), which gives rise to what will much later be called a
gauge freedom.

But for the Greeks, numbers would be of only very limited utility as
representatives of magnitudes. For, as the Pythagoreans had discovered,
magnitudes can stand in ratios that no pair of numbers stand to one another. The
famous example is the ratio of the diagonal of a square to one of its sides: no two
integers display exactly this proportion. Such pairs of magnitudes were called
“incommensurable”, since no number of copies of the one, laid end to end,
would exactly equal any number of copies of the other.

It is often reported that the Pythagoreans discovered “irrational numbers”, or that v2
is irrational, but this is an anachronism. They never recognized what we call rational
numbers, much less irrational numbers, and would not have understood
“irrational” as an adjective applicable to any individual mathematical object. A

III

magnitude, e.g. the diagonal of a square, is neither “rational” nor “irrational” in itself:
it is either commensurable or incommensurable with another magnitude. The fact
that the side and diagonal of a square are incommensurable cannot be attributed to
anything peculiar about either the side or the diagonal taken individually. Both the
side and the diagonal are commensurable with some other magnitudes and

incommensurable with others.



What the discovery of incommensurable magnitudes showed was that the structure
of ratios among magnitudes is intrinsically richer than the structure of ratios among
numbers. That is, the field of geometry presents an inherently more extensive
mathematical universe than does the field of arithmetic, as the Greeks understood it.
Perhaps this realization lies behind the legend that the Pythagoreans, being on a
ship at sea when one of their circle first proved the existence of incommensurable
magnitudes, threw the hapless discoverer overboard. The Pythagoreans famously
wished to reduce the fundamental essence of all things to number, but
geometric investigation demonstrated this to be impossible.



