Carathéodory interpolation problem over quaternions and related questions

Vladimir Bolotnikov

GAG seminar at W\&M

The problem consists of finding a function from a given functional class with prescribed Taylor coefficients about a given point.
The classical versions are concerned about functions f analytic in the open unit disk \mathbb{D} and such that $|f(z)|<1$ (the Schur class \mathcal{S}) or $\Re f(z \mid>0$ (the Carathéodory class \mathcal{C}).
C. Carathéodory (1907) described the set of all points $\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{C}^{n}$ such that there exists

$$
f(z)=1+c_{1} z+\ldots+c_{n} z^{n}+\ldots \in \mathcal{C}
$$

as the closed convex body in \mathbb{C}^{n} whose boundary points correspond to rational functions

$$
\sum_{j=1}^{n} \gamma_{j} \cdot \frac{\lambda_{j}+z}{\lambda_{j}-z} \quad\left(\gamma_{j} \geq 0, \quad\left|\lambda_{j}\right|=1\right)
$$

taking purely imaginary values everywhere on the unit circle except for at most n simple poles.

C. Carathéodory (1911, Rendiconti del Circolo Matematico di

 Palermo) Let $E \subset \mathbb{R}^{n}$. Then any $x \in E$ in the convex hull of E is a convex combination of at most $n+1$ points from E.O. Toeplitz (1911): there exists

$$
\begin{equation*}
f(z)=c_{0}+c_{1} z+\ldots+c_{n-1} z^{n-1}+\ldots \in \mathcal{C} \tag{1}
\end{equation*}
$$

if and only if $Q_{n}=\left[\begin{array}{cccc}c_{0}+\bar{c}_{0} & \bar{c}_{1} & \ldots & \bar{c}_{n-1} \\ c_{1} & c_{0}+\bar{c}_{0} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \bar{c}_{1} \\ c_{n-1} & \cdots & c_{1} & c_{0}+\bar{c}_{0}\end{array}\right] \succeq 0$
To construct a concrete $f \in \mathcal{C}$ as in (1), it suffices to extend the given $\left\{c_{j}\right\}_{j=0}^{n-1}$ to an infinite positive-definite sequence $\left\{c_{j}\right\}_{j=0}^{\infty}$ (such that $Q_{k} \succeq 0$ for $k \geq n$). Such an extension always exists and is unique if and only if Q_{n} is singular. In this case, $\operatorname{rank} Q_{k}=\operatorname{rank} Q_{n}$ for all $k \geq n$.

Another question: to describe all $f \in \mathcal{C}$ as in (1) or all positive-definite extensions of $\left\{c_{j}\right\}_{j=0}^{n-1}$ in the indeterminate case. Let

$$
\mathbf{T}_{n}^{f}=\left[\begin{array}{cccc}
f_{0} & 0 & \ldots & 0 \\
f_{1} & f_{0} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
f_{n-1} & \ldots & f_{1} & f_{0}
\end{array}\right] \quad \text { if } \quad f(z)=\sum_{k=0}^{\infty} f_{k} z^{k}
$$

Thus, $f \in \mathcal{C}$ if and only if $\mathbf{T}_{k}^{f}+\mathbf{T}_{k}^{f *} \succeq 0$ for all $k \geq 0$ and either all these matrices are invertible or

$$
\operatorname{rank}\left(\mathbf{T}_{k}^{f}+\mathbf{T}_{k}^{f *}\right)=\min (k, n) \quad \text { for some } \quad n \geq 0
$$

In the latter case, f is a rational function as on the page 1.
I. Schur (1917): given f_{0}, \ldots, f_{n-1}, there exists

$$
\begin{equation*}
f(z)=f_{0}+f_{1} z+\ldots+f_{n-1} z^{n-1}+\ldots \in \mathcal{S} \tag{2}
\end{equation*}
$$

if and only if $P_{n}=I-\mathbf{T}_{n}^{f} \mathbf{T}_{n}^{f_{*}} \succeq 0$ (i.e., \mathbf{T}_{n} is a contraction). In this case $\left\{f_{j}\right\}_{j=0}^{n-1}$ extends to $\left\{f_{j}\right\}_{j=0}^{\infty}$ such that $P_{k} \succeq 0$ for $k \geq n$.
The extension is unique if and only if P_{n} is singular. In this case $\operatorname{rank} P_{k}=\operatorname{rank} P_{n}$ for all $k \geq n$ and the corresponding f is a finite Blaschke product, $\operatorname{deg} f=\operatorname{rank} P_{n}$.

Thus, $f \in \mathcal{S}$ if and only if $P_{k}=I-\mathbf{T}_{k}^{f} \mathbf{T}_{k}^{f *} \succeq 0$ for all $k \geq 0$ and either all these matrices are invertible or

$$
\operatorname{rank}\left(I-\mathbf{T}_{k}^{f} \mathbf{T}_{k}^{f *}\right)=\min (k, n) \quad \text { for some } \quad n \geq 0
$$

In the latter case, f is a Blaschke product of degree n. In the indeterminate case, all f of the form (2) are described by a linear fractional formula.

Another question: If $P_{n}=I-\mathbf{T}_{n}^{f} \mathbf{T}_{n}^{f *} \nsucceq 0$, i.e., if $\nu_{-}\left(P_{n}\right)=\kappa>0$, is it possible to extend it so that $\nu_{-}\left(P_{m}\right)=\kappa$ for all $m>n$?
M.G. Krein - H. Langer (1977): Yes, if P_{n} is invertible. Each such extension gives rise to a meromorphic f in \mathbb{D} with κ poles and such that

$$
\lim _{r \rightarrow 1^{-}} \sup _{|z|=r}|f(z)| \leq 1
$$

or equivalently, to a function of the form

$$
f=\frac{s}{b}: \quad s \in \mathcal{S}, \quad b(z)=\prod_{i=1}^{\kappa} \frac{z-a_{i}}{1-z \bar{a}_{i}}, \quad\left|a_{i}\right|<1 .
$$

Quaternions

$$
\begin{aligned}
& \mathbb{H}=\left\{\alpha=x_{0}+\mathbf{i} \mathbf{x}_{1}+\mathbf{j} x_{2}+\mathbf{k} x_{3}: x_{i} \in \mathbb{R}, \mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=\mathbf{i} \mathbf{j}=-1\right\}, \\
& \Re(\alpha)=x_{0}, \quad \bar{\alpha}=x_{0}-\mathbf{i} x_{1}-\mathbf{j} x_{2}-\mathbf{k} x_{3}, \quad|\alpha|=\sqrt{\alpha \bar{\alpha}} .
\end{aligned}
$$

Associated with any non-real α are its centralizer

$$
\mathbb{C}_{\alpha}=\{\beta \in \mathbb{H}: \alpha \beta=\beta \alpha\}=\operatorname{span}_{\mathbb{R}}(1, \alpha)
$$

and the similarity (conjugacy) class

$$
[\alpha]:=\left\{h \alpha h^{-1}: h \neq 0\right\}=\{\beta \in \mathbb{H}: \Re(\beta)=\Re(\alpha) \&|\beta|=|\alpha|\} .
$$

$\alpha \sim \beta$ if and only if

$$
\boldsymbol{\mu}_{\alpha}(z)=z^{2}-2 z \Re \alpha+|\alpha|^{2}=z^{2}-2 z \Re \beta+|\beta|^{2}=\boldsymbol{\mu}_{\beta}(z)
$$

Matrices over quaternions

Given a matrix $A=\left[a_{i j}\right]$, its adjoint (conjugate transpose) A^{*} is defined as $A^{*}=\left[\bar{a}_{j i}\right]$. If A is Hermitian (i.e., $A=A^{*}$) all its eigenvalues are real; if they are all nonnegative (equvalently, $\mathbf{x}^{*} A \mathbf{x} \geq 0$ for any $\mathbf{x} \in \mathbb{H}^{n}$) the matrix A is called positive semidefinite. If all eigenvalues are positive (equivalently, $\mathbf{x}^{*} A \mathbf{x}>0$ for any $\mathbf{x} \in \mathbb{H}^{n}$), A is called positive definite.

Matrices over quaternions

Given a matrix $A=\left[a_{i j}\right]$, its adjoint (conjugate transpose) A^{*} is defined as $A^{*}=\left[\bar{a}_{j i}\right]$. If A is Hermitian (i.e., $A=A^{*}$) all its eigenvalues are real; if they are all nonnegative (equvalently, $\mathbf{x}^{*} A \mathbf{x} \geq 0$ for any $\mathbf{x} \in \mathbb{H}^{n}$) the matrix A is called positive semidefinite. If all eigenvalues are positive (equivalently, $\mathbf{x}^{*} A \mathbf{x}>0$ for any $\mathbf{x} \in \mathbb{H}^{n}$), A is called positive definite.

Cauchy interlacing theorem: If $A \in \mathbb{H}^{n \times n}$ is a Hermitian matrix with eigenvalues $\lambda_{1} \leq \ldots \leq \lambda_{n}$, and $B \in \mathbb{H}^{m \times m}$ is a principal submatrix of A with eigenvalues $\mu_{1} \leq \ldots \leq \mu_{m}$, then
$\lambda_{k} \leq \mu_{k} \leq \lambda_{k+n-m}$ for $k=1, \ldots, m$.
R.C. Thompson, Johns Hopkins Lecture Series, 1988.
T.Y. Tam (1999).

Stein equations and Schur complements

Let

$$
Z_{n}=\left[\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
1 & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 1 & 0
\end{array}\right], \quad C_{n}=\left[\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{n-1}
\end{array}\right] \in \mathbb{H}^{n \times 2}, \quad J=J^{*}
$$

Then the Stein equation $P_{n}-Z_{n} P_{n} Z_{n}^{*}=C_{n} J C_{n}^{*}$ has a unique (Hermitian) solution P_{n}. Furthermore, $P_{n+k}=\left[\begin{array}{cc}P_{n} & B_{n, k}^{*} \\ B_{n, k} & D_{k}\end{array}\right]$. If P_{n} is invertible,

$$
P_{n+k}=\left[\begin{array}{cc}
l & 0 \\
B_{n, k} P_{n}^{-1} & l
\end{array}\right]\left[\begin{array}{cc}
P_{n} & 0 \\
0 & \mathbf{S}_{k}
\end{array}\right]\left[\begin{array}{cc}
l & P_{n}^{-1} B_{n, k}^{*} \\
0 & I
\end{array}\right],
$$

where $\mathbf{S}_{k}:=D_{k}-B_{n, k} P_{n}^{-1} B_{n, k}^{*}$ is the Schur complement of P_{n}.

$$
\nu_{ \pm}\left(P_{n+k}\right)=\nu_{ \pm}\left(P_{n}\right)+\nu_{ \pm}\left(\mathbf{S}_{k}\right), \quad \operatorname{rank} P_{n+k}=n+\operatorname{rank} \mathbf{S}_{k} .
$$

Remark: \mathbf{S}_{k} satisfies the Stein identity

$$
\mathbf{S}_{k}-Z_{k} \mathbf{S}_{k} Z_{k}^{*}=C_{k}^{\prime} J C_{k}^{\prime *},
$$

where $C_{k}^{\prime} \in \mathbb{H}^{k \times 2}$ is given by

$$
C_{k}^{\prime}=\left[\begin{array}{c}
c_{0}^{\prime} \\
\vdots \\
c_{k-1}^{\prime}
\end{array}\right]=\left(I-Z_{k}\right)\left[-B_{n, k} P_{n}^{-1} \quad I_{k}\right]\left(I-Z_{n+k}\right)^{-1} C_{n+k} .
$$

Furthermore, the top row c_{0}^{\prime} in C_{k}^{\prime} is non-zero.

Remark: \mathbf{S}_{k} satisfies the Stein identity

$$
\mathbf{S}_{k}-Z_{k} \mathbf{S}_{k} Z_{k}^{*}=C_{k}^{\prime} J C_{k}^{\prime *},
$$

where $C_{k}^{\prime} \in \mathbb{H}^{k \times 2}$ is given by

$$
C_{k}^{\prime}=\left[\begin{array}{c}
c_{0}^{\prime} \\
\vdots \\
c_{k-1}^{\prime}
\end{array}\right]=\left(I-Z_{k}\right)\left[\begin{array}{ll}
-B_{n, k} P_{n}^{-1} & I_{k}
\end{array}\right]\left(I-Z_{n+k}\right)^{-1} C_{n+k}
$$

Furthermore, the top row c_{0}^{\prime} in C_{k}^{\prime} is non-zero.
This remark applies to

$$
C_{n}=\left[\begin{array}{ll}
\mathbf{e}_{n} & F_{n}
\end{array}\right], \quad \mathbf{e}_{n}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
\vdots
\end{array}\right], \quad F_{n}=\left[\begin{array}{c}
f_{0} \\
f_{1} \\
\vdots \\
f_{n-1}
\end{array}\right], \quad J=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right],
$$

in which case

$$
P_{n}-Z_{n} P_{n} Z_{n}^{*}=C_{n} J C_{n}^{*}=\mathbf{e}_{n} \mathbf{e}_{n}^{*}-F_{n} F_{n}^{*} \quad \Leftrightarrow \quad P_{n}=I-\mathbf{T}_{n}^{f} \mathbf{T}_{n}^{f *}
$$

$$
\mathbf{T}_{n+k}^{f}=\left[\begin{array}{cc}
\mathbf{T}_{n}^{f} & 0 \\
T_{n, k} & \mathbf{T}_{k}^{f}
\end{array}\right], \quad P_{n+k}=\left[\begin{array}{cc}
P_{n} & -\mathbf{T}_{n}^{f} T_{n, k}^{*} \\
-T_{n, k} \mathbf{T}_{n}^{f *} & P_{k}-T_{n, k} T_{n, k}^{*}
\end{array}\right],
$$

If P_{n} is invertible, then its Schur complement \mathbf{S}_{k} is subject to

$$
\mathbf{S}_{k}-Z_{k} \mathbf{S}_{k} Z_{k}^{*}=X_{k} X_{k}^{*}-Y_{k} Y_{k}^{*},
$$

where $X_{k}, Y_{k} \in \mathbb{H}^{k}$ are given by the formula

$$
\begin{aligned}
{\left[\begin{array}{ll}
X_{k} & Y_{k}
\end{array}\right] } & =\left[\begin{array}{cc}
x_{0} & y_{0} \\
\vdots & \vdots \\
x_{k-1} & y_{k-1}
\end{array}\right] \\
& =\left(I-Z_{k}\right)\left[\begin{array}{ll}
T_{n, k} \mathbf{T}_{n}^{f *} P_{n}^{-1} & I_{k}
\end{array}\right]\left(I-Z_{n+k}\right)^{-1}\left[\begin{array}{ll}
\mathbf{e}_{n+k} & F_{n+k}
\end{array}\right]
\end{aligned}
$$

$$
\mathbf{T}_{n+k}^{f}=\left[\begin{array}{cc}
\mathbf{T}_{n}^{f} & 0 \\
T_{n, k} & \mathbf{T}_{k}^{f}
\end{array}\right], \quad P_{n+k}=\left[\begin{array}{cc}
P_{n} & -\mathbf{T}_{n}^{f} T_{n, k}^{*} \\
-T_{n, k} \mathbf{T}_{n}^{f *} & P_{k}-T_{n, k} T_{n, k}^{*}
\end{array}\right],
$$

If P_{n} is invertible, then its Schur complement \mathbf{S}_{k} is subject to

$$
\mathbf{S}_{k}-Z_{k} \mathbf{S}_{k} Z_{k}^{*}=X_{k} X_{k}^{*}-Y_{k} Y_{k}^{*},
$$

where $X_{k}, Y_{k} \in \mathbb{H}^{k}$ are given by the formula

$$
\begin{aligned}
{\left[\begin{array}{ll}
X_{k} & Y_{k}
\end{array}\right] } & =\left[\begin{array}{cc}
x_{0} & y_{0} \\
\vdots & \vdots \\
x_{k-1} & y_{k-1}
\end{array}\right] \\
& =\left(I-Z_{k}\right)\left[\begin{array}{ll}
T_{n, k} \mathbf{T}_{n}^{f *} P_{n}^{-1} & I_{k}
\end{array}\right]\left(I-Z_{n+k}\right)^{-1}\left[\begin{array}{ll}
\mathbf{e}_{n+k} & F_{n+k}
\end{array}\right] .
\end{aligned}
$$

Since $\left[\begin{array}{ll}x_{0} & y_{0}\end{array}\right] \neq 0$ and $\mathbf{S}_{1}=\left|x_{0}\right|^{2}-\left|y_{0}\right|^{2}$, it follows that if $\nu_{-}\left(P_{n+1}\right)=\nu_{-}\left(P_{n}\right)$ (i.e., $\left.\mathbf{S}_{1} \geq 0\right)$, then $x_{0} \neq 0$. Then the Toeplitz matrix \mathbf{T}_{k}^{x} is invertible, and

$$
\left(\mathbf{T}_{k}^{x}\right)^{-1} \mathbf{S}_{k}\left(\mathbf{T}_{k}^{x *}\right)^{-1}-Z_{k}\left(\mathbf{T}_{k}^{x}\right)^{-1} \mathbf{S}_{k}\left(\mathbf{T}_{k}^{x *}\right)^{-1} Z_{k}^{*}=\mathbf{e}_{k} \mathbf{e}_{k}^{*}-\mathcal{E}_{k} \mathcal{E}_{k}^{*},
$$

where $\mathcal{E}_{k}=\left[\begin{array}{c}\varepsilon_{0} \\ \vdots \\ \varepsilon_{k-1}\end{array}\right]:=\left(\mathbf{T}_{k}^{\times}\right)^{-1} Y_{k}$.

Therefore, $\left(\mathbf{T}_{k}^{x}\right)^{-1} \mathbf{S}_{k}\left(\mathbf{T}_{k}^{x *}\right)^{-1}=I_{k}-\mathbf{T}_{k}^{\varepsilon} \mathbf{T}_{k}^{\varepsilon *}$. By the Sylvester law of inertia,

$$
\nu_{ \pm}\left(P_{n+k}\right)=\nu_{ \pm}\left(P_{n}\right)+\nu_{ \pm}\left(\mathbf{S}_{k}\right)=\nu_{ \pm}\left(P_{n}\right)+\nu_{ \pm}\left(I_{k}-\mathbf{T}_{k}^{\varepsilon} \mathbf{T}_{k}^{\varepsilon *}\right)
$$

Theorem: Given f_{0}, \ldots, f_{N-1}, let us assume that the matrix $P_{N}:=I-\mathbf{T}_{N}^{f} \mathbf{T}_{N}^{f *}$ is singular and that $P_{n}(n<N)$ is the maximal invertible leading principal submatrix of P_{N}.

1. If $\operatorname{rank}\left(P_{N}\right)=\operatorname{rank}\left(P_{n}\right)=n$, then $\nu_{-}\left(P_{N}\right)=\nu_{-}\left(P_{n}\right):=\kappa$ and for each $m \geq 1$, the extension P_{N+m} with $\nu_{-}\left(P_{N+m}\right)=\kappa$ is unique and satisfies $\operatorname{rank}\left(P_{N+m}\right)=n$.
2. If $\operatorname{rank}\left(P_{N}\right)=d>n$, then for any choice of $f_{N}, \ldots, f_{2 N-d-1}$,

$$
\nu_{ \pm}\left(P_{N+j}\right)=\nu_{ \pm}\left(P_{N}\right)+j \quad \text { for } \quad j=1, \ldots, N-d
$$

In particular, the matrix $P_{2 N-d}$ is invertible.

Extensions of invertible P_{n} with minimal negative inertia

Define matrix polynomials $\psi=\left[\begin{array}{ll}\psi_{11} & \psi_{12} \\ \psi_{21} & \psi_{22}\end{array}\right]$ and $\Theta=\left[\begin{array}{ll}\theta_{11} & \theta_{12} \\ \theta_{21} & \theta_{22}\end{array}\right]$:

$$
\begin{aligned}
& \Psi(z)=z^{n} I_{2}-(z-1)\left[\begin{array}{l}
\mathbf{e}^{*} \\
F_{n}^{*}
\end{array}\right]\left(I-Z_{n}^{*}\right)^{-1} P_{n}^{-1} \mathbf{Z}_{n}(z)\left[\begin{array}{ll}
\mathbf{e} & -F_{n}
\end{array}\right], \\
& \Theta(z)=I_{2}+(z-1)\left[\begin{array}{l}
\mathbf{e}^{*} \\
F_{n}^{*}
\end{array}\right]\left(I-z Z_{n}^{*}\right)^{-1} P_{n}^{-1}\left(I-Z_{n}\right)^{-1}\left[\begin{array}{ll}
\mathbf{e} & -F_{n}
\end{array}\right],
\end{aligned}
$$

where $\quad \mathbf{Z}_{n}(z):=\sum_{j=1}^{n} z^{n-j} Z_{n}^{j-1} \quad$ and $\quad\left(I-z Z_{n}^{*}\right)^{-1}=\sum_{j=0}^{n-1} z^{j} Z_{n}^{* j}$.
Then $\Theta(z) \Psi(z)=z^{n} I_{2}$ and

$$
\left[\begin{array}{ll}
\theta_{21,0} & \theta_{22,0}
\end{array}\right] \neq 0, \quad\left[\begin{array}{l}
\psi_{11,0} \\
\psi_{21,0}
\end{array}\right] \neq 0
$$

Claim: If the n first coefficients of $f(z)=\sum f_{j} z^{j} \in \mathbb{H}[[z]]$ are such that P_{n} is invertible, then

$$
\left[\begin{array}{cc}
1 & -f
\end{array}\right] \Theta=\left[\begin{array}{ll}
\theta_{11}-f \theta_{21} & \theta_{12}-f \theta_{22}
\end{array}\right]=z^{n}\left[\begin{array}{ll}
x & -y \tag{4}
\end{array}\right]
$$

where $y(z)=\sum_{j=0}^{\infty} y_{j} z^{j}$ and $x(z)=\sum_{j=0}^{\infty} x_{j} z^{j}$ are the power series with coefficients defined by
$\left[\begin{array}{cc}x_{0} & y_{0} \\ \vdots & \vdots \\ x_{k-1} & y_{k-1}\end{array}\right]=\left(I-Z_{k}\right)\left[T_{n, k} \mathbf{T}_{n}^{f *} P_{n}^{-1} \quad I_{k}\right]\left(I-Z_{n+k}\right)^{-1}\left[\begin{array}{ll}\mathbf{e}_{n+k} & F_{n+k}\end{array}\right]$.

Claim: If the n first coefficients of $f(z)=\sum f_{j} z^{j} \in \mathbb{H}[[z]]$ are such that P_{n} is invertible, then

$$
\left[\begin{array}{ll}
1 & -f
\end{array}\right] \Theta=\left[\begin{array}{ll}
\theta_{11}-f \theta_{21} & \theta_{12}-f \theta_{22}
\end{array}\right]=z^{n}\left[\begin{array}{ll}
x & -y \tag{4}
\end{array}\right]
$$

where $y(z)=\sum_{j=0}^{\infty} y_{j} z^{j}$ and $x(z)=\sum_{j=0}^{\infty} x_{j} z^{j}$ are the power series with coefficients defined by
$\left[\begin{array}{cc}x_{0} & y_{0} \\ \vdots & \vdots \\ x_{k-1} & y_{k-1}\end{array}\right]=\left(I-Z_{k}\right)\left[T_{n, k} \mathbf{T}_{n}^{f *} P_{n}^{-1} \quad I_{k}\right]\left(I-Z_{n+k}\right)^{-1}\left[\begin{array}{ll}\mathbf{e}_{n+k} & F_{n+k}\end{array}\right]$.
It turns out that $x_{0} \psi_{11,0}-y_{0} \psi_{21,0} \neq 0$, and (4) can be written as
$f=\left(x \psi_{11}-y \psi_{21}\right)^{-1}\left(y \psi_{22}-x \psi_{12}\right)=\left(\psi_{11}-\varepsilon \psi_{21}\right)^{-1}\left(\varepsilon \psi_{22}-\psi_{12}\right)$,
where $\varepsilon=x^{-1} y$.

Theorem: Let $f_{0}, \ldots, f_{n-1} \in \mathbb{H}$ be such that P_{n} is invertible and let ψ and Θ be the polynomials defined two pages ago. Then

1. Equality

$$
\left(\psi_{11}-\varepsilon \psi_{21}\right)^{-1}\left(\varepsilon \psi_{22}-\psi_{12}\right)=\left(\theta_{11} \varepsilon+\theta_{21}\right)\left(\theta_{21} \varepsilon+\theta_{22}\right)^{-1}
$$

holds for any $\varepsilon \in \mathbb{H}[[z]]$ subject to equivalent conditions

$$
\begin{equation*}
\psi_{11,0}-\varepsilon_{0} \psi_{21,0} \neq 0 \Longleftrightarrow \theta_{21,0} \varepsilon_{0}+\theta_{22,0} \neq 0 \tag{5}
\end{equation*}
$$

which are met for all ε with $\left|\varepsilon_{0}\right| \leq 1$ if and only if the bottom diagonal entry in P_{n}^{-1} is positive.
2. An extended sequence $\left\{f_{j}\right\}_{j \geq 0}$ satisfies equalities

$$
\nu_{-}\left(P_{n+k}\right)=\nu_{-}\left(P_{n}\right) \quad \text { for all } \quad k \geq 1
$$

if and only if its Z-transform $f(z):=\sum f_{j} z^{j}$ is of the form
$f=\left(\psi_{11}-\varepsilon \psi_{21}\right)^{-1}\left(\varepsilon \psi_{22}-\psi_{12}\right)=\left(\theta_{11} \varepsilon+\theta_{21}\right)\left(\theta_{21} \varepsilon+\theta_{22}\right)^{-1}$,
where $\varepsilon \in \mathbb{H}[[z]]$ is any power series subject to conditions (5) and such that $P_{k}^{\varepsilon}:=I-\mathbf{T}_{k}^{\varepsilon} \mathbf{T}_{k}^{\varepsilon *} \succeq 0$ for all $k \geq 1$.

Function-theoretic setting

$\mathbb{H}[[z]]$ is a ring with operations

$$
(f+g)(z)=\sum_{k=0}^{\infty} z^{k}\left(f_{k}+g_{k}\right) \quad \text { and } \quad(f g)(z)=\sum_{k=0}^{\infty} z^{k}\left(\sum_{\ell=0}^{k} f_{\ell} g_{k-\ell}\right)
$$

Given $\rho>0$, let \mathcal{H}_{ρ} be the ring of power series absolutely converging in the ball $\mathbb{B}_{\rho}=\{\alpha \in \mathbb{H}:|\alpha|<\rho\}$:

$$
\mathcal{H}_{\rho}=\left\{f(z)=\sum_{k=0}^{\infty} f_{k} z^{k}: \limsup _{k \rightarrow \infty} \sqrt[k]{\left|f_{k}\right|} \leq 1 / \rho\right\}
$$

Any $f \in \mathcal{H}_{\rho}$ can be evaluated at any $\alpha \in \mathbb{B}_{\rho}$ on the left or on the right via (absolutely) converging series

$$
f^{\boldsymbol{e}_{\ell}}(\alpha)=\sum_{k=0}^{\infty} \alpha^{k} f_{k} \quad \text { and } \quad f^{\boldsymbol{e}_{r}}(\alpha)=\sum_{k=0}^{\infty} f_{k} \alpha^{k}
$$

$\alpha \in \mathbb{H}$ is called a left or right zero of $f \in \mathcal{H}_{\rho}$ if respectively, $f^{e_{\ell}}(\alpha)=0$ or $f^{\boldsymbol{e}_{r}}(\alpha)=0$. If $V \subset \mathbb{B}_{\rho}$ is a similarity class, then any $f \in \mathcal{H}_{\rho}$ either has no zeros in V or it has one left and one right zero in V, or $f^{\boldsymbol{e}_{\ell}}(\alpha)=f^{\boldsymbol{e}_{r}}(\alpha)=0$ for all $\alpha \in V$.
$\alpha \in \mathbb{H}$ is called a left or right zero of $f \in \mathcal{H}_{\rho}$ if respectively, $f^{\boldsymbol{e}_{\ell}}(\alpha)=0$ or $f^{\boldsymbol{e}_{r}}(\alpha)=0$. If $V \subset \mathbb{B}_{\rho}$ is a similarity class, then any $f \in \mathcal{H}_{\rho}$ either has no zeros in V or it has one left and one right zero in V, or $f^{\boldsymbol{e}_{\ell}}(\alpha)=f^{\boldsymbol{e}_{r}}(\alpha)=0$ for all $\alpha \in V$.

Therefore, for every $f \in \mathcal{H}_{\rho}$ and a similarity class $V \subset \mathbb{B}_{\rho}$, either $f^{e_{\ell}}(\alpha)=c=f^{e_{r}}(\alpha)$ for all $\alpha \in V$ or for any $\alpha \in V$ there is a unique $\alpha^{\prime} \in V$ such that $f^{e_{r}}\left(\alpha^{\prime}\right)=f^{e_{\ell}}(\alpha)$.
Therefore, $f^{e_{\ell}}(V)=f^{e_{r}}(V)$ for any $f \in \mathcal{H}_{\rho}$ and $V \subset \mathbb{B}_{\rho}$.
Therefore, $f^{\boldsymbol{e}_{\ell}}\left(\mathbb{B}_{\rho^{\prime}}\right)=f^{\boldsymbol{e}_{r}}\left(\mathbb{B}_{\rho^{\prime}}\right)$ for any $\rho^{\prime}<\rho$.
$\alpha \in \mathbb{H}$ is called a left or right zero of $f \in \mathcal{H}_{\rho}$ if respectively, $f^{\boldsymbol{e}_{\ell}}(\alpha)=0$ or $f^{\boldsymbol{e}_{r}}(\alpha)=0$. If $V \subset \mathbb{B}_{\rho}$ is a similarity class, then any $f \in \mathcal{H}_{\rho}$ either has no zeros in V or it has one left and one right zero in V, or $f^{\boldsymbol{e}_{\ell}}(\alpha)=f^{\boldsymbol{e}_{r}}(\alpha)=0$ for all $\alpha \in V$.

Therefore, for every $f \in \mathcal{H}_{\rho}$ and a similarity class $V \subset \mathbb{B}_{\rho}$, either $f^{e_{\ell}}(\alpha)=c=f^{e_{r}}(\alpha)$ for all $\alpha \in V$ or for any $\alpha \in V$ there is a unique $\alpha^{\prime} \in V$ such that $f^{e_{r}}\left(\alpha^{\prime}\right)=f^{e_{\ell}}(\alpha)$.

Therefore, $f^{e_{\ell}}(V)=f^{e_{r}}(V)$ for any $f \in \mathcal{H}_{\rho}$ and $V \subset \mathbb{B}_{\rho}$.
Therefore, $f^{\boldsymbol{e}_{\ell}}\left(\mathbb{B}_{\rho^{\prime}}\right)=f^{\boldsymbol{e}_{r}}\left(\mathbb{B}_{\rho^{\prime}}\right)$ for any $\rho^{\prime}<\rho$.
We now introduce the norm $\|f\|_{\infty}:=\sup _{\alpha \in \mathbb{B}_{1}}\left|f^{e_{\ell}}(\alpha)\right|=\sup _{\alpha \in \mathbb{B}_{1}}\left|f^{e_{r}}(\alpha)\right|$ on \mathcal{H}_{1} and define the Schur class $\mathcal{S}_{\text {Hi }}$ to be

$$
\mathcal{S}_{\mathbb{H}}:=\left\{f \in \mathcal{H}_{1}:\|f\|_{\infty} \leq 1\right\} .
$$

$\alpha \in \mathbb{H}$ is called a left or right zero of $f \in \mathcal{H}_{\rho}$ if respectively, $f^{\boldsymbol{e}_{\boldsymbol{\ell}}}(\alpha)=0$ or $f^{\boldsymbol{e}_{r}}(\alpha)=0$. If $V \subset \mathbb{B}_{\rho}$ is a similarity class, then any $f \in \mathcal{H}_{\rho}$ either has no zeros in V or it has one left and one right zero in V, or $f^{\boldsymbol{e}_{\ell}}(\alpha)=f^{\boldsymbol{e}_{r}}(\alpha)=0$ for all $\alpha \in V$.

Therefore, for every $f \in \mathcal{H}_{\rho}$ and a similarity class $V \subset \mathbb{B}_{\rho}$, either $f^{e_{\ell}}(\alpha)=c=f^{e_{r}}(\alpha)$ for all $\alpha \in V$ or for any $\alpha \in V$ there is a unique $\alpha^{\prime} \in V$ such that $f^{e_{r}}\left(\alpha^{\prime}\right)=f^{e_{\ell}}(\alpha)$.

Therefore, $f^{e_{\ell}}(V)=f^{e_{r}}(V)$ for any $f \in \mathcal{H}_{\rho}$ and $V \subset \mathbb{B}_{\rho}$.
Therefore, $f^{\boldsymbol{e}_{\ell}}\left(\mathbb{B}_{\rho^{\prime}}\right)=f^{\boldsymbol{e}_{r}}\left(\mathbb{B}_{\rho^{\prime}}\right)$ for any $\rho^{\prime}<\rho$.
We now introduce the norm $\|f\|_{\infty}:=\sup _{\alpha \in \mathbb{B}_{1}}\left|f^{\boldsymbol{e}_{\ell}}(\alpha)\right|=\sup _{\alpha \in \mathbb{B}_{1}}\left|f^{\boldsymbol{e}_{r}}(\alpha)\right|$ on \mathcal{H}_{1} and define the Schur class $\mathcal{S}_{\text {Hi }}$ to be

$$
\mathcal{S}_{\mathbb{H}}:=\left\{f \in \mathcal{H}_{1}:\|f\|_{\infty} \leq 1\right\} .
$$

Alpay-B-Colombo-Sabadini (2015): A power series $f \in \mathbb{H}[[z]]$ belongs to $\mathcal{S}_{\mathbb{H}}$ if and only if $P_{n}=I_{n}-\mathbf{T}_{n}^{f} \mathbf{T}_{n}^{f *} \succeq 0$ for all $n \geq 1$.

Blaschke factors and products

Define the Blaschke product of degree n to be

$$
f=\phi \cdot \mathbf{b}_{\alpha_{1}} \mathbf{b}_{\alpha_{2}} \cdots \mathbf{b}_{\alpha_{n}} \quad\left(\alpha_{i} \in \mathbb{B}_{1},|\phi|=1\right)
$$

where the Blaschke factor \mathbf{b}_{α} is the power series defined by
$\mathbf{b}_{\alpha}(z)=(z-\alpha)(1-z \bar{\alpha})^{-1}=-\alpha+\left(1-|\alpha|^{2}\right) \sum_{k=0}^{\infty} \bar{\alpha}^{k} z^{k+1} \quad\left(\alpha \in \mathbb{B}_{1}\right)$.
Since $\left|\mathbf{b}_{\alpha}^{\boldsymbol{e}_{\ell}}(\gamma)\right|=\left|\mathbf{b}_{\alpha}^{\boldsymbol{e}_{r}}(\gamma)\right|<\begin{array}{lll}<1 & \text { if } & |\gamma|<1, \\ =1 & \text { if } & |\gamma|=1,\end{array}$, Blaschke factors and products are in $\mathcal{S}_{\mathbb{H}}$.
Example: $\mathbf{b}_{\mathbf{i} / 2} \mathbf{b}_{\mathbf{j} / 2} \mathbf{b}_{\mathbf{k} / 2}$

Blaschke factors and products

Define the Blaschke product of degree n to be

$$
f=\phi \cdot \mathbf{b}_{\alpha_{1}} \mathbf{b}_{\alpha_{2}} \cdots \mathbf{b}_{\alpha_{n}} \quad\left(\alpha_{i} \in \mathbb{B}_{1},|\phi|=1\right)
$$

where the Blaschke factor \mathbf{b}_{α} is the power series defined by
$\mathbf{b}_{\alpha}(z)=(z-\alpha)(1-z \bar{\alpha})^{-1}=-\alpha+\left(1-|\alpha|^{2}\right) \sum_{k=0}^{\infty} \bar{\alpha}^{k} z^{k+1} \quad\left(\alpha \in \mathbb{B}_{1}\right)$.
Since $\left|\mathbf{b}_{\alpha}^{\boldsymbol{e}_{\ell}}(\gamma)\right|=\left|\mathbf{b}_{\alpha}^{\boldsymbol{e}_{r}}(\gamma)\right|<1 \begin{array}{lll}<1 & \text { if } & |\gamma|<1, \\ =1 & \text { if } & |\gamma|=1,\end{array}$, Blaschke factors and products are in $\mathcal{S}_{\mathbb{H}}$.
Example: $\mathbf{b}_{\mathbf{i} / 2} \mathbf{b}_{\mathbf{j} / 2} \mathbf{b}_{\mathbf{k} / 2}$
B. (2021): A power series $f(z)=\sum f_{k} z^{k} \in \mathbb{H}[[z]]$ is a Blaschke product of degree k if and only if $P_{n}=I_{n}-\mathbf{T}_{n}^{f} \mathbf{T}_{n}^{f *}$ is positive semidefinite and $\operatorname{rank}\left(P_{n}\right)=\min (k, n)$ for all $n \geq 1$.

Carathéodory-Schur problem in $\mathcal{S}_{\mathbb{H}}$

Theorem: Given $f_{0}, \ldots, f_{n-1} \in \mathbb{H}$, there exists an

$$
\begin{equation*}
f(z)=f_{0}+f_{1} z+\ldots+f_{n-1} z^{n-1}+\ldots \in \mathcal{S}_{\mathbb{H}} \tag{6}
\end{equation*}
$$

if and only if $P_{n}=I-\mathbf{T}_{n}^{f} \mathbf{T}_{n}^{f *} \succeq 0$. If $P_{n} \succ 0$, then the formula
$f=\left(\theta_{11} \varepsilon+\theta_{21}\right)\left(\theta_{21} \varepsilon+\theta_{22}\right)^{-1}=\left(\psi_{11}-\varepsilon \psi_{21}\right)^{-1}\left(\varepsilon \psi_{22}-\psi_{12}\right), \quad \varepsilon \in \mathcal{S}_{\mathbb{H}}$
parametrizes all $f \in \mathcal{S}_{\mathbb{H}}$ subject to condition (6). Furthermore, f is a finite Blaschke product if and only if ε is. In this case, $\operatorname{deg} f=n+\operatorname{deg} \varepsilon$.

Carathéodory-Schur problem in $\mathcal{S}_{\mathbb{H}}$

Theorem: Given $f_{0}, \ldots, f_{n-1} \in \mathbb{H}$, there exists an

$$
\begin{equation*}
f(z)=f_{0}+f_{1} z+\ldots+f_{n-1} z^{n-1}+\ldots \in \mathcal{S}_{\mathbb{H}} \tag{6}
\end{equation*}
$$

if and only if $P_{n}=I-\mathbf{T}_{n}^{f} \mathbf{T}_{n}^{f *} \succeq 0$. If $P_{n} \succ 0$, then the formula
$f=\left(\theta_{11} \varepsilon+\theta_{21}\right)\left(\theta_{21} \varepsilon+\theta_{22}\right)^{-1}=\left(\psi_{11}-\varepsilon \psi_{21}\right)^{-1}\left(\varepsilon \psi_{22}-\psi_{12}\right), \quad \varepsilon \in \mathcal{S}_{\mathbb{H}}$
parametrizes all $f \in \mathcal{S}_{\mathbb{H}}$ subject to condition (6). Furthermore, f is a finite Blaschke product if and only if ε is. In this case, $\operatorname{deg} f=n+\operatorname{deg} \varepsilon$.

- Linear fractional formulas make sense, since the bottom diagonal entry in P_{n}^{-1} is positive and $\left|\varepsilon_{0}\right| \leq 1$.
- If $\operatorname{deg} f=m$, then
$\operatorname{rank}\left(I-\mathbf{T}_{k}^{\varepsilon} \mathbf{T}_{k}^{\varepsilon *}\right)=\operatorname{rank} P_{n+k}-n=\min \{m, n+k\}-n=\min \{m-n, k\}$

Uniform approximation Carathéodory theorem

Theorem: Let $f \in \mathcal{S}_{\mathcal{H}}$. For any $\rho<1$ and $\epsilon>0$, there exists a finite Blaschke product B such that

$$
\left|f^{\boldsymbol{e}_{\ell}}(\alpha)-B^{\boldsymbol{e}_{\ell}}(\alpha)\right|<\epsilon \quad \text { and } \quad\left|f^{\boldsymbol{e}_{r}}(\alpha)-B^{\boldsymbol{e}_{r}}(\alpha)\right|<\epsilon
$$ for all $\alpha \in \overline{\mathbb{B}}_{\rho}$.

Uniform approximation Carathéodory theorem

Theorem: Let $f \in \mathcal{S}_{\mathcal{H}}$. For any $\rho<1$ and $\epsilon>0$, there exists a finite Blaschke product B such that

$$
\left|f^{\boldsymbol{e}_{\ell}}(\alpha)-B^{\boldsymbol{e}_{\ell}}(\alpha)\right|<\epsilon \quad \text { and } \quad\left|f^{\boldsymbol{e}_{r}}(\alpha)-B^{\boldsymbol{e}_{r}}(\alpha)\right|<\epsilon
$$ for all $\alpha \in \overline{\mathbb{B}}_{\rho}$.

Choose n such that $2 \rho^{n}<\epsilon$ and assume that $f(z)=\sum_{j \geq 0} f_{j} z^{j}$ is not a finite Blaschke product so that $P_{n}=I-\mathbf{T}_{n}^{f} \mathbf{T}_{n}^{f *} \succ 0$. Then there is a finite Blaschke product B having the same first n coefficients as f. Then $g=\frac{1}{2}(f-B) \in \mathcal{S}_{\mathbb{H}}$, and $g(z)=z^{n} h(z)$ for some $h \in \mathcal{H}_{1}$. Since $\mathbf{T}_{n+m}^{g}=\left[\begin{array}{cc}0 & 0 \\ \mathbf{T}_{m}^{h} & 0\end{array}\right]$, for any $m \geq 1$, we have

$$
I_{m+n}-\mathbf{T}_{n+m}^{g} \mathbf{T}_{n+m}^{g *}=\left[\begin{array}{cc}
I_{n} & 0 \\
0 & I_{m}-\mathbf{T}_{m}^{h} \mathbf{T}_{m}^{h *}
\end{array}\right] \succeq 0 \quad \text { for all } \quad m \geq 1
$$

and hence, $h \in \mathcal{S}_{\mathbb{H}}$. Therefore, for any $\alpha \in \overline{\mathbb{B}}_{\rho}$,

$$
\left|f^{\boldsymbol{e}_{\ell}}(\alpha)-B^{\boldsymbol{e}_{\ell}}(\alpha)\right|=2\left|g^{\boldsymbol{e}_{\ell}}(\alpha)\right|=2|\alpha|^{n}\left|h^{\boldsymbol{e}_{\ell}}(\alpha)\right| \leq 2 \rho^{n}<\epsilon
$$

The generalized Schur class $\mathcal{S}_{\text {Hil }}^{k}$

Let us say that $f \in \mathbb{H}[[z]]$ belongs to the generalized Schur class $\mathcal{S}_{\mathbb{H}}^{\kappa}$ if the Hermitian matrices $P_{n}=I-\mathbf{T}_{n}^{f} \mathbf{T}_{n}^{f *}$ have κ negative eigenvalues counted with multiplicities:

$$
\nu_{-}\left(I-\mathbf{T}_{n}^{f} \mathbf{T}_{n}^{f *}\right)=\kappa \quad \text { for all } \quad n \geq n_{0}
$$

The indefinite Carathéodory problem consists of finding

$$
\begin{equation*}
f(z)=f_{0}+z f_{1}+\ldots+f_{n-1} z^{n-1}+\ldots \in \mathcal{S}_{\mathbb{H}}^{\kappa} \tag{7}
\end{equation*}
$$

with minimally possible κ (which is at least $\nu_{-}\left(P_{n}\right)$).

The generalized Schur class $\mathcal{S}_{\text {Hil }}^{k}$

Let us say that $f \in \mathbb{H}[[z]]$ belongs to the generalized Schur class $\mathcal{S}_{\mathbb{H}}^{\kappa}$ if the Hermitian matrices $P_{n}=I-\mathbf{T}_{n}^{f} \mathbf{T}_{n}^{f *}$ have κ negative eigenvalues counted with multiplicities:

$$
\nu_{-}\left(I-\mathbf{T}_{n}^{f} \mathbf{T}_{n}^{f *}\right)=\kappa \quad \text { for all } \quad n \geq n_{0}
$$

The indefinite Carathéodory problem consists of finding

$$
\begin{equation*}
f(z)=f_{0}+z f_{1}+\ldots+f_{n-1} z^{n-1}+\ldots \in \mathcal{S}_{\mathbb{H}}^{K} \tag{7}
\end{equation*}
$$

with minimally possible κ (which is at least $\nu_{-}\left(P_{n}\right)$). If P_{n} is invertible, then $\kappa_{\text {min }}=\nu_{-}\left(P_{n}\right)$. Moreover, the formula

$$
f=\left(\theta_{11} \varepsilon+\theta_{21}\right)\left(\theta_{21} \varepsilon+\theta_{22}\right)^{-1}=\left(\psi_{11}-\varepsilon \psi_{21}\right)^{-1}\left(\varepsilon \psi_{22}-\psi_{12}\right)
$$

with free parameter $\varepsilon \in \mathcal{S}_{\mathbb{H}}$ subject to conditions

$$
\psi_{11,0}-\varepsilon_{0} \psi_{21,0} \neq 0 \Longleftrightarrow \theta_{21,0} \varepsilon_{0}+\theta_{22,0} \neq 0
$$

parametrizes all f of the form (7).

The singular case

Let us suppose that P_{n} is singular, $\operatorname{rank}\left(P_{n}\right)=d<n$, and let P_{r} ($r<n$) be the maximal invertible leading submatrix of P_{n}.

1. If $d=r$ (i.e., $\operatorname{rank}\left(P_{n}\right)=\operatorname{rank}\left(P_{r}\right)$), then there is a unique $f \in \mathcal{S}_{\mathbb{H}}^{\kappa}\left(\kappa=\nu_{-}\left(P_{n}\right)=\nu_{-}\left(P_{r}\right)\right)$ with initial coefficients f_{0}, \ldots, f_{n-1}.
2. If $d>r$, then the minimally possible κ equals

$$
\kappa=\nu_{-}\left(P_{n}\right)+n-d=\nu_{-}\left(P_{n}\right)+\nu_{0}\left(P_{n}\right),
$$

where ν_{0} stands for the multiplicity of the zero eigenvalue.

The singular case

Let us suppose that P_{n} is singular, $\operatorname{rank}\left(P_{n}\right)=d<n$, and let P_{r} ($r<n$) be the maximal invertible leading submatrix of P_{n}.

1. If $d=r$ (i.e., $\operatorname{rank}\left(P_{n}\right)=\operatorname{rank}\left(P_{r}\right)$), then there is a unique $f \in \mathcal{S}_{\mathbb{H}}^{\kappa}\left(\kappa=\nu_{-}\left(P_{n}\right)=\nu_{-}\left(P_{r}\right)\right)$ with initial coefficients f_{0}, \ldots, f_{n-1}.
2. If $d>r$, then the minimally possible κ equals

$$
\kappa=\nu_{-}\left(P_{n}\right)+n-d=\nu_{-}\left(P_{n}\right)+\nu_{0}\left(P_{n}\right),
$$

where ν_{0} stands for the multiplicity of the zero eigenvalue.

- To get all $f \in \mathcal{S}_{\mathbb{H}}^{k}$ with the first n coefficients equal to f_{0}, \ldots, f_{n-1} in Case 2, we first choose arbitrary $f_{n}, \ldots, f_{2 n-d}$ to reach the invertible matrix matrix $P_{2 n-d}$ and then apply the linear fractional formula to each such choice.

Regular meromorphic functions associated with $\mathcal{S}_{\mathcal{H}}^{k}$

For any $f \in \mathcal{S}_{\mathbb{H}}^{\kappa}$, there is $n \geq \kappa$ such that P_{n} is invertible and $\nu_{-}\left(P_{n}\right)=\kappa$.

For such n, define the polynomial Θ as above and conclude that

$$
f=\left(\theta_{11} \varepsilon+\theta_{21}\right)\left(\theta_{21} \varepsilon+\theta_{22}\right)^{-1}
$$

for some $\varepsilon \in \mathcal{S}_{\mathbb{H}}$ such that $\theta_{21,0} \varepsilon_{0}+\theta_{22,0} \neq 0$. Therefore, $\theta_{21} \varepsilon+\theta_{22}$ has no zeros in a neighborhood of the origin and therefore f converges absolutely in this neighborhood.

Thus, the power series $f \in \mathcal{S}_{\mathbb{H}}^{K}$ can be left and right evaluated in a neighborhood of the origin giving rise to left and right regular functions $f^{\boldsymbol{e}_{\ell}}$ and $f^{e_{r}}$.

Further elaboration may come from the Krein-Langer type factorization result: For any $f \in \mathcal{S}_{\mathbb{H}}^{K}$ there exist $S_{L}, S_{R} \in \mathcal{S}_{\mathbb{H}}$ and Blaschke products B_{L}, B_{R} of degree κ so that f admits coprime power-series factorizations

$$
f(z)=B_{L}(z)^{-1} S_{L}(z)=S_{R}(z) B_{R}(z)^{-1}
$$

Furthermore, $B_{L} B_{L}^{\sharp}=B_{R} B_{R}^{\sharp}$. If we denote by \mathcal{Z} the zero set of the real Blaschke product $\widetilde{B}:=B_{L} B_{L}^{\sharp}=B_{R} B_{R}^{\sharp}$, then the functions $f^{e_{\ell}}$ and $f^{e_{r}}$ admit meromorphic (semi-regular) extensions to $\mathbb{B} \backslash \mathcal{Z}$ by the formulas

$$
f^{\boldsymbol{e}_{\ell}}(\alpha)=\widetilde{B}(\alpha)^{-1}\left(B_{L}^{\sharp} S_{L}\right)^{\boldsymbol{e}_{\ell}}(\alpha), \quad f^{\boldsymbol{e}_{r}}(\alpha)=\left(S_{R} B_{R}^{\sharp}\right)^{\boldsymbol{e}_{r}}(\alpha) \widetilde{B}(\alpha)^{-1} .
$$

Excluded parameters

Let us say that $\varepsilon \in \mathcal{S}_{\mathbb{H}}$ is an excluded parameter of order m of the linear fractional transformation

$$
\begin{aligned}
& \mathbf{L}_{\psi}[\varepsilon]:=\left(\psi_{11}-\varepsilon \psi_{21}\right)^{-1}\left(\varepsilon \psi_{22}-\psi_{12}\right), \quad \psi=\left[\begin{array}{l}
\psi_{11} \psi_{12} \\
\psi_{21} \psi_{22}
\end{array}\right], \\
& \text { if } \psi_{11-\varepsilon \psi_{21}=z^{m} h} \text { for some } h \in \mathbb{H}[[z]] \text { with } h_{0} \neq 0 .
\end{aligned}
$$

Excluded parameters

Let us say that $\varepsilon \in \mathcal{S}_{\mathbb{H}}$ is an excluded parameter of order m of the linear fractional transformation

$$
\mathbf{L}_{\psi}[\varepsilon]:=\left(\psi_{11}-\varepsilon \psi_{21}\right)^{-1}\left(\varepsilon \psi_{22}-\psi_{12}\right), \quad \Psi=\left[\begin{array}{ll}
\psi_{11} & \psi_{12} \\
\psi_{21} & \psi_{22}
\end{array}\right]
$$

if $\psi_{11}-\varepsilon \psi_{21}=z^{m} h$ for some $h \in \mathbb{H}[[z]]$ with $h_{0} \neq 0$.
Theorem: There exists an excluded parameter $\varepsilon \in \mathcal{S}_{\mathbb{H}}$ of order m if and only if the $m \times m$ bottom principal submatrix of P_{n}^{-1} is either (1) negative definite, in which case there are infinitely many excluded parameters of order m, or
(2) the maximal negative semidefinite bottom principal submatrix of P_{n}^{-1}, in which case there is a unique excluded parameter ε of order m.

Theorem: Let $\varepsilon \in \mathcal{S}_{\mathbb{H}}$ be an excluded parameter of order m. Then the power series $f_{\varepsilon}=\mathbf{L}_{\Psi}[\varepsilon]$ belongs to $\mathcal{S}_{\mathbb{H}}^{\kappa-m}$ and is of the form
$f_{\varepsilon}(z)=f_{0}+\ldots+f_{n-k-1} z^{n-k-1}+f_{\varepsilon, n-k} z^{n-k}+\ldots, \quad f_{\varepsilon, n-k} \neq f_{n-k}$.
In other words, the $n-m$ first coefficients of f_{ε} are equal to prescribed f_{0}, \ldots, f_{n-k-1}, but $f_{\varepsilon, n-k}$ is different from the prescribed f_{n-k}.

