Carathéodory interpolation problem over quaternions and related questions

Vladimir Bolotnikov

GAG seminar at W&M

白 ト イ ヨ ト イ ヨ ト

The problem consists of finding a function from a given functional class with prescribed Taylor coefficients about a given point.

The classical versions are concerned about functions f analytic in the open unit disk \mathbb{D} and such that |f(z)| < 1 (the Schur class S) or $\Re f(z) > 0$ (the Carathéodory class C).

C. Carathéodory (1907) described the set of all points $(c_1, \ldots, c_n) \in \mathbb{C}^n$ such that there exists

 $f(z) = 1 + c_1 z + \ldots + c_n z^n + \ldots \in \mathcal{C}$

as the closed convex body in \mathbb{C}^n whose boundary points correspond to rational functions

$$\sum_{j=1}^n \gamma_j \cdot rac{\lambda_j + z}{\lambda_j - z} \quad (\gamma_j \geq 0, \;\; |\lambda_j| = 1)$$

taking purely imaginary values everywhere on the unit circle except for at most n simple poles.

C. Carathéodory (1911, Rendiconti del Circolo Matematico di Palermo) Let $E \subset \mathbb{R}^n$. Then any $x \in E$ in the convex hull of E is a convex combination of at most n + 1 points from E.

O. Toeplitz (1911): there exists

 $f(z) = c_0 + c_1 z + \ldots + c_{n-1} z^{n-1} + \ldots \in \mathcal{C}$ (1) if and only if $Q_n = \begin{bmatrix} c_0 + \overline{c}_0 & \overline{c}_1 & \ldots & \overline{c}_{n-1} \\ c_1 & c_0 + \overline{c}_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \overline{c}_1 \\ c_{n-1} & \ldots & c_1 & c_0 + \overline{c}_0 \end{bmatrix} \succeq 0$ To construct a concrete $f \in \mathcal{C}$ as in (1), it suffices to extend the

given $\{c_j\}_{j=0}^{n-1}$ to an infinite positive-definite sequence $\{c_j\}_{j=0}^{\infty}$ (such that $Q_k \succeq 0$ for $k \ge n$). Such an extension always exists and is unique if and only if Q_n is singular. In this case, $\operatorname{rank} Q_k = \operatorname{rank} Q_n$ for all $k \ge n$.

Another question: to describe all $f \in C$ as in (1) or all positive-definite extensions of $\{c_j\}_{j=0}^{n-1}$ in the indeterminate case.

Let

$$\mathbf{T}_{n}^{f} = \begin{bmatrix} f_{0} & 0 & \dots & 0 \\ f_{1} & f_{0} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ f_{n-1} & \dots & f_{1} & f_{0} \end{bmatrix} \quad \text{if} \quad f(z) = \sum_{k=0}^{\infty} f_{k} z^{k}.$$

Thus, $f \in C$ if and only if $\mathbf{T}_k^f + \mathbf{T}_k^{f*} \succeq 0$ for all $k \ge 0$ and either all these matrices are invertible or

$$\operatorname{rank}\left(\mathbf{T}_{k}^{f}+\mathbf{T}_{k}^{f*}\right)=\min\left(k,n\right)$$
 for some $n\geq0.$

In the latter case, f is a rational function as on the page 1.

・ 同 ト ・ ヨ ト ・ ヨ ト …

I. Schur (1917): given f_0, \ldots, f_{n-1} , there exists

$$f(z) = f_0 + f_1 z + \ldots + f_{n-1} z^{n-1} + \ldots \in \mathcal{S}$$
 (2)

if and only if $P_n = I - \mathbf{T}_n^f \mathbf{T}_n^{f*} \succeq 0$ (i.e., \mathbf{T}_n is a contraction). In this case $\{f_j\}_{j=0}^{n-1}$ extends to $\{f_j\}_{j=0}^{\infty}$ such that $P_k \succeq 0$ for $k \ge n$.

The extension is unique if and only if P_n is singular. In this case $\operatorname{rank} P_k = \operatorname{rank} P_n$ for all $k \ge n$ and the corresponding f is a finite Blaschke product, deg $f = \operatorname{rank} P_n$.

Thus, $f \in S$ if and only if $P_k = I - \mathbf{T}_k^f \mathbf{T}_k^{f*} \succeq 0$ for all $k \ge 0$ and either all these matrices are invertible or

 $\operatorname{rank}\left(I - \mathbf{T}_{k}^{f}\mathbf{T}_{k}^{f*}\right) = \min(k, n) \text{ for some } n \geq 0.$

In the latter case, f is a Blaschke product of degree n. In the indeterminate case, all f of the form (2) are described by a linear fractional formula.

→ 同 → → 目 → → 目 → の Q ()

Another question: If $P_n = I - \mathbf{T}_n^f \mathbf{T}_n^{f*} \succeq 0$, i.e., if $\nu_-(P_n) = \kappa > 0$, is it possible to extend it so that $\nu_-(P_m) = \kappa$ for all m > n?

M.G. Krein – H. Langer (1977): Yes, if P_n is invertible. Each such extension gives rise to a meromorphic f in \mathbb{D} with κ poles and such that

 $\lim_{r\to 1^-}\sup_{|z|=r}|f(z)|\leq 1$

or equivalently, to a function of the form

$$f=rac{s}{b}: \hspace{0.2cm} s\in \mathcal{S}, \hspace{0.2cm} b(z)=\prod_{i=1}^{\kappa}rac{z-a_i}{1-z\overline{a}_i}, \hspace{0.2cm} |a_i|<1.$$

イボト イヨト イヨト 二日

$$\mathbb{H} = \{ \alpha = x_0 + \mathbf{i}x_1 + \mathbf{j}x_2 + \mathbf{k}x_3 : x_i \in \mathbb{R}, \ \mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i}\mathbf{j}\mathbf{k} = -1 \},$$

$$\Re(\alpha) = x_0, \quad \overline{\alpha} = x_0 - \mathbf{i}x_1 - \mathbf{j}x_2 - \mathbf{k}x_3, \quad |\alpha| = \sqrt{\alpha\overline{\alpha}}.$$

Associated with any non-real α are its centralizer

$$\mathbb{C}_{\alpha} = \{\beta \in \mathbb{H} : \ \alpha\beta = \beta\alpha\} = \operatorname{span}_{\mathbb{R}}(1, \alpha)$$

and the similarity (conjugacy) class

 $[\alpha] := \{h\alpha h^{-1} : h \neq 0\} = \{\beta \in \mathbb{H} : \Re(\beta) = \Re(\alpha) \& |\beta| = |\alpha|\}.$

 $\alpha \sim \beta$ if and only if

$$\boldsymbol{\mu}_{\alpha}(z) = z^2 - 2z\Re\alpha + |\alpha|^2 = z^2 - 2z\Re\beta + |\beta|^2 = \boldsymbol{\mu}_{\beta}(z)$$

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣

Given a matrix $A = [a_{ij}]$, its adjoint (conjugate transpose) A^* is defined as $A^* = [\overline{a}_{ji}]$. If A is Hermitian (i.e., $A = A^*$) all its eigenvalues are real; if they are all nonnegative (equvalently, $\mathbf{x}^*A\mathbf{x} \ge 0$ for any $\mathbf{x} \in \mathbb{H}^n$) the matrix A is called *positive* semidefinite. If all eigenvalues are positive (equivalently, $\mathbf{x}^*A\mathbf{x} > 0$ for any $\mathbf{x} \in \mathbb{H}^n$), A is called positive definite.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Given a matrix $A = [a_{ij}]$, its adjoint (conjugate transpose) A^* is defined as $A^* = [\overline{a}_{ji}]$. If A is Hermitian (i.e., $A = A^*$) all its eigenvalues are real; if they are all nonnegative (equvalently, $\mathbf{x}^*A\mathbf{x} \ge 0$ for any $\mathbf{x} \in \mathbb{H}^n$) the matrix A is called *positive* semidefinite. If all eigenvalues are positive (equivalently, $\mathbf{x}^*A\mathbf{x} > 0$ for any $\mathbf{x} \in \mathbb{H}^n$), A is called positive definite.

Cauchy interlacing theorem: If $A \in \mathbb{H}^{n \times n}$ is a Hermitian matrix with eigenvalues $\lambda_1 \leq \ldots \leq \lambda_n$, and $B \in \mathbb{H}^{m \times m}$ is a principal submatrix of A with eigenvalues $\mu_1 \leq \ldots \leq \mu_m$, then $\lambda_k \leq \mu_k \leq \lambda_{k+n-m}$ for $k = 1, \ldots, m$. R.C. Thompson, Johns Hopkins Lecture Series, 1988.

T.Y. Tam (1999).

(4月) (1日) (日) 日

Stein equations and Schur complements

Let

$$Z_{n} = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 1 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 1 & 0 \end{bmatrix}, \quad C_{n} = \begin{bmatrix} c_{0} \\ c_{1} \\ \vdots \\ c_{n-1} \end{bmatrix} \in \mathbb{H}^{n \times 2}, \quad J = J^{*}$$
Then the Stein equation $P_{n} - Z_{n}P_{n}Z_{n}^{*} = C_{n}JC_{n}^{*}$ has a unique
(Hermitian) solution P_{n} . Furthermore, $P_{n+k} = \begin{bmatrix} P_{n} & B_{n,k}^{*} \\ B_{n,k} & D_{k} \end{bmatrix}$.
If P_{n} is invertible,

 $P_{n+k} = \begin{bmatrix} I & 0 \\ B_{n,k}P_n^{-1} & I \end{bmatrix} \begin{bmatrix} P_n & 0 \\ 0 & \mathbf{S}_k \end{bmatrix} \begin{bmatrix} I & P_n^{-1}B_{n,k}^* \\ 0 & I \end{bmatrix},$ where $\mathbf{S}_k := D_k - B_{n,k}P_n^{-1}B_{n,k}^*$ is the Schur complement of P_n . $\nu_{\pm}(P_{n+k}) = \nu_{\pm}(P_n) + \nu_{\pm}(\mathbf{S}_k), \quad \operatorname{rank}P_{n+k} = n + \operatorname{rank}\mathbf{S}_k.$

→ < = > < = > = → < = > < = -</p>

Remark: S_k satisfies the Stein identity

$$\mathbf{S}_k - Z_k \mathbf{S}_k Z_k^* = C_k' J C_k'^*,$$

where $C'_k \in \mathbb{H}^{k \times 2}$ is given by

$$C'_{k} = \begin{bmatrix} c'_{0} \\ \vdots \\ c'_{k-1} \end{bmatrix} = (I - Z_{k}) \begin{bmatrix} -B_{n,k}P_{n}^{-1} & I_{k} \end{bmatrix} (I - Z_{n+k})^{-1}C_{n+k}.$$

Furthermore, the top row c'_0 in C'_k is non-zero.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Remark: S_k satisfies the Stein identity

$$\mathbf{S}_k - Z_k \mathbf{S}_k Z_k^* = C_k' J C_k'^*,$$

where $C'_k \in \mathbb{H}^{k \times 2}$ is given by

$$C'_{k} = \begin{bmatrix} c'_{0} \\ \vdots \\ c'_{k-1} \end{bmatrix} = (I - Z_{k}) \begin{bmatrix} -B_{n,k}P_{n}^{-1} & I_{k} \end{bmatrix} (I - Z_{n+k})^{-1}C_{n+k}.$$

Furthermore, the top row c'_0 in C'_k is non-zero.

This remark applies to

$$C_n = \begin{bmatrix} \mathbf{e}_n & F_n \end{bmatrix}, \quad \mathbf{e}_n = \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix}, \quad F_n = \begin{bmatrix} f_0\\f_1\\\vdots\\f_{n-1} \end{bmatrix}, \quad J = \begin{bmatrix} 1 & 0\\0 & -1 \end{bmatrix},$$

in which case

$$P_n - Z_n P_n Z_n^* = C_n J C_n^* = \mathbf{e}_n \mathbf{e}_n^* - F_n F_n^* \quad \Leftrightarrow \quad P_n = I - \mathbf{T}_n^f \mathbf{T}_n^{f*}$$

$$\mathbf{T}_{n+k}^{f} = \begin{bmatrix} \mathbf{T}_{n}^{f} & \mathbf{0} \\ T_{n,k} & \mathbf{T}_{k}^{f} \end{bmatrix}, \quad P_{n+k} = \begin{bmatrix} P_{n} & -\mathbf{T}_{n}^{f} T_{n,k}^{*} \\ -T_{n,k} \mathbf{T}_{n}^{f*} & P_{k} - T_{n,k} T_{n,k}^{*} \end{bmatrix},$$

If P_n is invertible, then its Schur complement S_k is subject to

$$\mathbf{S}_k - Z_k \mathbf{S}_k Z_k^* = X_k X_k^* - Y_k Y_k^*,$$

where $X_k, Y_k \in \mathbb{H}^k$ are given by the formula

$$\begin{bmatrix} X_k & Y_k \end{bmatrix} = \begin{bmatrix} x_0 & y_0 \\ \vdots & \vdots \\ x_{k-1} & y_{k-1} \end{bmatrix}$$
$$= (I - Z_k) \begin{bmatrix} T_{n,k} \mathbf{T}_n^{f*} P_n^{-1} & I_k \end{bmatrix} (I - Z_{n+k})^{-1} \begin{bmatrix} \mathbf{e}_{n+k} & F_{n+k} \end{bmatrix}.$$

(日本) (日本) (日本)

$$\mathbf{T}_{n+k}^{f} = \begin{bmatrix} \mathbf{T}_{n}^{f} & \mathbf{0} \\ T_{n,k} & \mathbf{T}_{k}^{f} \end{bmatrix}, \quad P_{n+k} = \begin{bmatrix} P_{n} & -\mathbf{T}_{n}^{f} T_{n,k}^{*} \\ -T_{n,k} \mathbf{T}_{n}^{f*} & P_{k} - T_{n,k} T_{n,k}^{*} \end{bmatrix},$$

If P_n is invertible, then its Schur complement S_k is subject to

$$\mathbf{S}_k - Z_k \mathbf{S}_k Z_k^* = X_k X_k^* - Y_k Y_k^*,$$

where $X_k, Y_k \in \mathbb{H}^k$ are given by the formula

$$\begin{bmatrix} X_k & Y_k \end{bmatrix} = \begin{bmatrix} x_0 & y_0 \\ \vdots & \vdots \\ x_{k-1} & y_{k-1} \end{bmatrix}$$
$$= (I - Z_k) \begin{bmatrix} T_{n,k} \mathbf{T}_n^{f*} P_n^{-1} & I_k \end{bmatrix} (I - Z_{n+k})^{-1} \begin{bmatrix} \mathbf{e}_{n+k} & F_{n+k} \end{bmatrix}.$$

Since $[x_0 \ y_0] \neq 0$ and $\mathbf{S}_1 = |x_0|^2 - |y_0|^2$, it follows that if $\nu_-(P_{n+1}) = \nu_-(P_n)$ (i.e., $\mathbf{S}_1 \ge 0$), then $x_0 \neq 0$. Then the Toeplitz matrix $\mathbf{T}_k^{\mathbf{X}}$ is invertible, and

$$(\mathbf{T}_{k}^{\times})^{-1}\mathbf{S}_{k}(\mathbf{T}_{k}^{\times*})^{-1} - Z_{k}(\mathbf{T}_{k}^{\times})^{-1}\mathbf{S}_{k}(\mathbf{T}_{k}^{\times*})^{-1}Z_{k}^{*} = \mathbf{e}_{k}\mathbf{e}_{k}^{*} - \mathcal{E}_{k}\mathcal{E}_{k}^{*},$$

where $\mathcal{E}_{k} = \begin{bmatrix} \varepsilon_{0} \\ \vdots \\ \varepsilon_{k-1} \end{bmatrix} := (\mathbf{T}_{k}^{\times})^{-1}Y_{k}.$

Therefore, $(\mathbf{T}_{k}^{\times})^{-1}\mathbf{S}_{k}(\mathbf{T}_{k}^{\times*})^{-1} = I_{k} - \mathbf{T}_{k}^{\varepsilon}\mathbf{T}_{k}^{\varepsilon*}$. By the Sylvester law of inertia,

 $\nu_{\pm}(P_{n+k}) = \nu_{\pm}(P_n) + \nu_{\pm}(\mathbf{S}_k) = \nu_{\pm}(P_n) + \nu_{\pm}(I_k - \mathbf{T}_k^{\varepsilon}\mathbf{T}_k^{\varepsilon*})$

Theorem: Given f_0, \ldots, f_{N-1} , let us assume that the matrix $P_N := I - \mathbf{T}_N^f \mathbf{T}_N^{f*}$ is singular and that P_n (n < N) is the maximal invertible leading principal submatrix of P_N .

- 1. If $\operatorname{rank}(P_N) = \operatorname{rank}(P_n) = n$, then $\nu_-(P_N) = \nu_-(P_n) := \kappa$ and for each $m \ge 1$, the extension P_{N+m} with $\nu_-(P_{N+m}) = \kappa$ is unique and satisfies $\operatorname{rank}(P_{N+m}) = n$.
- 2. If $\operatorname{rank}(P_N) = d > n$, then for any choice of f_N, \ldots, f_{2N-d-1} ,

 $u_{\pm}(P_{N+j}) = \nu_{\pm}(P_N) + j \text{ for } j = 1, \dots, N - d.$

In particular, the matrix P_{2N-d} is invertible.

Extensions of invertible P_n with minimal negative inertia

Define matrix polynomials
$$\Psi = \begin{bmatrix} \psi_{11} & \psi_{12} \\ \psi_{21} & \psi_{22} \end{bmatrix}$$
 and $\Theta = \begin{bmatrix} \theta_{11} & \theta_{12} \\ \theta_{21} & \theta_{22} \end{bmatrix}$:

$$\Psi(z) = z^{n} I_{2} - (z - 1) \begin{bmatrix} \mathbf{e}^{*} \\ F_{n}^{*} \end{bmatrix} (I - Z_{n}^{*})^{-1} P_{n}^{-1} \mathbf{Z}_{n}(z) \begin{bmatrix} \mathbf{e} & -F_{n} \end{bmatrix},$$

$$\Theta(z) = I_{2} + (z - 1) \begin{bmatrix} \mathbf{e}^{*} \\ F_{n}^{*} \end{bmatrix} (I - zZ_{n}^{*})^{-1} P_{n}^{-1} (I - Z_{n})^{-1} \begin{bmatrix} \mathbf{e} & -F_{n} \end{bmatrix},$$

where
$$\mathbf{Z}_{n}(z) := \sum_{j=1}^{n} z^{n-j} Z_{n}^{j-1}$$
 and $(I - zZ_{n}^{*})^{-1} = \sum_{j=0}^{n-1} z^{j} Z_{n}^{*j}$.
Then $\Theta(z)\Psi(z) = z^{n}I_{2}$ and
 $[\theta_{21,0} \quad \theta_{22,0}] \neq 0, \quad \begin{bmatrix} \psi_{11,0} \\ \psi_{21,0} \end{bmatrix} \neq 0.$

<ロ> (四) (四) (三) (三) (三) 三

Claim: If the *n* first coefficients of $f(z) = \sum f_j z^j \in \mathbb{H}[[z]]$ are such that P_n is invertible, then

$$\begin{bmatrix} 1 & -f \end{bmatrix} \Theta = \begin{bmatrix} \theta_{11} - f \theta_{21} & \theta_{12} - f \theta_{22} \end{bmatrix} = z^n \begin{bmatrix} x & -y \end{bmatrix}, \quad (4)$$

where $y(z) = \sum_{j=0}^{\infty} y_j z^j$ and $x(z) = \sum_{j=0}^{\infty} x_j z^j$ are the power series with coefficients defined by

$$\begin{bmatrix} x_0 & y_0 \\ \vdots & \vdots \\ x_{k-1} & y_{k-1} \end{bmatrix} = (I - Z_k) \begin{bmatrix} T_{n,k} \mathbf{T}_n^{f*} P_n^{-1} & I_k \end{bmatrix} (I - Z_{n+k})^{-1} \begin{bmatrix} \mathbf{e}_{n+k} & F_{n+k} \end{bmatrix}.$$

(個) (ヨ) (ヨ) (ヨ)

Claim: If the *n* first coefficients of $f(z) = \sum f_j z^j \in \mathbb{H}[[z]]$ are such that P_n is invertible, then

$$\begin{bmatrix} 1 & -f \end{bmatrix} \Theta = \begin{bmatrix} \theta_{11} - f \theta_{21} & \theta_{12} - f \theta_{22} \end{bmatrix} = z^n \begin{bmatrix} x & -y \end{bmatrix}, \quad (4)$$

where $y(z) = \sum_{j=0}^{\infty} y_j z^j$ and $x(z) = \sum_{j=0}^{\infty} x_j z^j$ are the power series with coefficients defined by

$$\begin{bmatrix} x_0 & y_0 \\ \vdots & \vdots \\ x_{k-1} & y_{k-1} \end{bmatrix} = (I - Z_k) \begin{bmatrix} T_{n,k} \mathbf{T}_n^{f*} P_n^{-1} & I_k \end{bmatrix} (I - Z_{n+k})^{-1} \begin{bmatrix} \mathbf{e}_{n+k} & F_{n+k} \end{bmatrix}.$$

It turns out that $x_0\psi_{11,0} - y_0\psi_{21,0} \neq 0$, and (4) can be written as

$$f = (x\psi_{11} - y\psi_{21})^{-1}(y\psi_{22} - x\psi_{12}) = (\psi_{11} - \varepsilon\psi_{21})^{-1}(\varepsilon\psi_{22} - \psi_{12}),$$

where $\varepsilon = x^{-1}y$.

Theorem: Let $f_0, \ldots, f_{n-1} \in \mathbb{H}$ be such that P_n is invertible and let Ψ and Θ be the polynomials defined two pages ago. Then

1. Equality

 $(\psi_{11} - \varepsilon \psi_{21})^{-1} (\varepsilon \psi_{22} - \psi_{12}) = (\theta_{11} \varepsilon + \theta_{21}) (\theta_{21} \varepsilon + \theta_{22})^{-1}$

holds for any $\varepsilon \in \mathbb{H}[[z]]$ subject to equivalent conditions

 $\psi_{11,0} - \varepsilon_0 \psi_{21,0} \neq 0 \iff \theta_{21,0} \varepsilon_0 + \theta_{22,0} \neq 0, \quad (5)$

which are met for all ε with $|\varepsilon_0| \le 1$ if and only if the bottom diagonal entry in P_n^{-1} is positive.

2. An extended sequence $\{f_j\}_{j\geq 0}$ satisfies equalities

 $u_-(P_{n+k}) = \nu_-(P_n) \quad \text{for all} \quad k \ge 1$

if and only if its Z-transform $f(z) := \sum f_j z^j$ is of the form

 $f = (\psi_{11} - \varepsilon \psi_{21})^{-1} (\varepsilon \psi_{22} - \psi_{12}) = (\theta_{11}\varepsilon + \theta_{21}) (\theta_{21}\varepsilon + \theta_{22})^{-1},$

where $\varepsilon \in \mathbb{H}[[z]]$ is any power series subject to conditions (5) and such that $P_k^{\varepsilon} := I - \mathbf{T}_k^{\varepsilon} \mathbf{T}_k^{\varepsilon*} \succeq 0$ for all $k \ge 1$.

Function-theoretic setting

 $\mathbb{H}[[z]]$ is a ring with operations

$$(f+g)(z) = \sum_{k=0}^{\infty} z^k (f_k + g_k)$$
 and $(fg)(z) = \sum_{k=0}^{\infty} z^k \left(\sum_{\ell=0}^k f_\ell g_{k-\ell}\right).$

Given $\rho > 0$, let \mathcal{H}_{ρ} be the ring of power series absolutely converging in the ball $\mathbb{B}_{\rho} = \{\alpha \in \mathbb{H} : |\alpha| < \rho\}$:

$$\mathcal{H}_{
ho} = igg\{ f(z) = \sum_{k=0}^{\infty} f_k z^k : \limsup_{k o \infty} \sqrt[k]{|f_k|} \le 1/
ho igg\}.$$

Any $f \in \mathcal{H}_{\rho}$ can be evaluated at any $\alpha \in \mathbb{B}_{\rho}$ on the left or on the right via (absolutely) converging series

$$f^{\boldsymbol{e_\ell}}(\alpha) = \sum_{k=0}^{\infty} \alpha^k f_k$$
 and $f^{\boldsymbol{e_r}}(\alpha) = \sum_{k=0}^{\infty} f_k \alpha^k$.

• (1) • (

 $\alpha \in \mathbb{H}$ is called a *left* or *right zero* of $f \in \mathcal{H}_{\rho}$ if respectively, $f^{e_{\ell}}(\alpha) = 0$ or $f^{e_{r}}(\alpha) = 0$. If $V \subset \mathbb{B}_{\rho}$ is a similarity class, then any $f \in \mathcal{H}_{\rho}$ either has no zeros in V or it has one left and one right zero in V, or $f^{e_{\ell}}(\alpha) = f^{e_{r}}(\alpha) = 0$ for all $\alpha \in V$.

マロト イヨト イヨト 二日

 $\alpha \in \mathbb{H}$ is called a *left* or *right zero* of $f \in \mathcal{H}_{\rho}$ if respectively, $f^{e_{\ell}}(\alpha) = 0$ or $f^{e_{r}}(\alpha) = 0$. If $V \subset \mathbb{B}_{\rho}$ is a similarity class, then any $f \in \mathcal{H}_{\rho}$ either has no zeros in V or it has one left and one right zero in V, or $f^{e_{\ell}}(\alpha) = f^{e_{r}}(\alpha) = 0$ for all $\alpha \in V$.

Therefore, for every $f \in \mathcal{H}_{\rho}$ and a similarity class $V \subset \mathbb{B}_{\rho}$, either $f^{\boldsymbol{e_{\ell}}}(\alpha) = c = f^{\boldsymbol{e_{r}}}(\alpha)$ for all $\alpha \in V$ or for any $\alpha \in V$ there is a unique $\alpha' \in V$ such that $f^{\boldsymbol{e_{r}}}(\alpha') = f^{\boldsymbol{e_{\ell}}}(\alpha)$.

Therefore, $f^{e_{\ell}}(V) = f^{e_{r}}(V)$ for any $f \in \mathcal{H}_{\rho}$ and $V \subset \mathbb{B}_{\rho}$.

Therefore, $f^{\boldsymbol{e_{\ell}}}(\mathbb{B}_{\rho'}) = f^{\boldsymbol{e_r}}(\mathbb{B}_{\rho'})$ for any $\rho' < \rho$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

 $\alpha \in \mathbb{H}$ is called a *left* or *right zero* of $f \in \mathcal{H}_{\rho}$ if respectively, $f^{e_{\ell}}(\alpha) = 0$ or $f^{e_{r}}(\alpha) = 0$. If $V \subset \mathbb{B}_{\rho}$ is a similarity class, then any $f \in \mathcal{H}_{\rho}$ either has no zeros in V or it has one left and one right zero in V, or $f^{e_{\ell}}(\alpha) = f^{e_{r}}(\alpha) = 0$ for all $\alpha \in V$.

Therefore, for every $f \in \mathcal{H}_{\rho}$ and a similarity class $V \subset \mathbb{B}_{\rho}$, either $f^{e_{\ell}}(\alpha) = c = f^{e_{r}}(\alpha)$ for all $\alpha \in V$ or for any $\alpha \in V$ there is a unique $\alpha' \in V$ such that $f^{e_{r}}(\alpha') = f^{e_{\ell}}(\alpha)$.

Therefore, $f^{e_{\ell}}(V) = f^{e_{r}}(V)$ for any $f \in \mathcal{H}_{\rho}$ and $V \subset \mathbb{B}_{\rho}$.

Therefore, $f^{\boldsymbol{e_{\ell}}}(\mathbb{B}_{\rho'}) = f^{\boldsymbol{e_{r}}}(\mathbb{B}_{\rho'})$ for any $\rho' < \rho$.

We now introduce the norm $||f||_{\infty} := \sup_{\alpha \in \mathbb{B}_1} |f^{e_\ell}(\alpha)| = \sup_{\alpha \in \mathbb{B}_1} |f^{e_r}(\alpha)|$ on \mathcal{H}_1 and define the *Schur class* $\mathcal{S}_{\mathbb{H}}$ to be

 $\mathcal{S}_{\mathbb{H}} := \left\{ f \in \mathcal{H}_1 : \|f\|_{\infty} \leq 1 \right\}.$

 $\alpha \in \mathbb{H}$ is called a *left* or *right zero* of $f \in \mathcal{H}_{\rho}$ if respectively, $f^{e_{\ell}}(\alpha) = 0$ or $f^{e_{r}}(\alpha) = 0$. If $V \subset \mathbb{B}_{\rho}$ is a similarity class, then any $f \in \mathcal{H}_{\rho}$ either has no zeros in V or it has one left and one right zero in V, or $f^{e_{\ell}}(\alpha) = f^{e_{r}}(\alpha) = 0$ for all $\alpha \in V$.

Therefore, for every $f \in \mathcal{H}_{\rho}$ and a similarity class $V \subset \mathbb{B}_{\rho}$, either $f^{\boldsymbol{e_{\ell}}}(\alpha) = c = f^{\boldsymbol{e_{r}}}(\alpha)$ for all $\alpha \in V$ or for any $\alpha \in V$ there is a unique $\alpha' \in V$ such that $f^{\boldsymbol{e_{r}}}(\alpha') = f^{\boldsymbol{e_{\ell}}}(\alpha)$.

Therefore, $f^{e_{\ell}}(V) = f^{e_{r}}(V)$ for any $f \in \mathcal{H}_{\rho}$ and $V \subset \mathbb{B}_{\rho}$.

Therefore, $f^{\boldsymbol{e_{\ell}}}(\mathbb{B}_{\rho'}) = f^{\boldsymbol{e_{r}}}(\mathbb{B}_{\rho'})$ for any $\rho' < \rho$.

We now introduce the norm $||f||_{\infty} := \sup_{\alpha \in \mathbb{B}_1} |f^{e_\ell}(\alpha)| = \sup_{\alpha \in \mathbb{B}_1} |f^{e_r}(\alpha)|$ on \mathcal{H}_1 and define the *Schur class* $\mathcal{S}_{\mathbb{H}}$ to be

 $\mathcal{S}_{\mathbb{H}} := \left\{ f \in \mathcal{H}_1 : \|f\|_{\infty} \leq 1 \right\}.$

Alpay-B-Colombo-Sabadini (2015): A power series $f \in \mathbb{H}[[z]]$ belongs to $S_{\mathbb{H}}$ if and only if $P_n = I_n - \mathbf{T}_n^f \mathbf{T}_n^{f*} \succeq 0$ for all $n \ge 1$.

Blaschke factors and products

Define the *Blaschke product* of degree n to be

 $f = \phi \cdot \mathbf{b}_{\alpha_1} \mathbf{b}_{\alpha_2} \cdots \mathbf{b}_{\alpha_n} \qquad (\alpha_i \in \mathbb{B}_1, \ |\phi| = 1)$

where the *Blaschke factor* \mathbf{b}_{α} is the power series defined by

$$\mathbf{b}_{\alpha}(z) = (z-\alpha)(1-z\overline{\alpha})^{-1} = -\alpha + (1-|\alpha|^2) \sum_{k=0}^{\infty} \overline{\alpha}^k z^{k+1} \quad (\alpha \in \mathbb{B}_1).$$

Since $|\mathbf{b}_{\alpha}^{\boldsymbol{e_{\ell}}}(\gamma)| = |\mathbf{b}_{\alpha}^{\boldsymbol{e_{r}}}(\gamma)| \stackrel{<}{=} 1 \quad \text{if} \quad |\gamma| < 1, \\ = 1 \quad \text{if} \quad |\gamma| = 1, \end{cases}$, Blaschke factors and products are in $\mathcal{S}_{\mathbb{H}}$.

Example: $\mathbf{b}_{\mathbf{i}/2}\mathbf{b}_{\mathbf{j}/2}\mathbf{b}_{\mathbf{k}/2}$

(周) (ヨ) (ヨ) (ヨ)

Blaschke factors and products

Define the *Blaschke product* of degree n to be

 $f = \phi \cdot \mathbf{b}_{\alpha_1} \mathbf{b}_{\alpha_2} \cdots \mathbf{b}_{\alpha_n}$ $(\alpha_i \in \mathbb{B}_1, |\phi| = 1)$

where the *Blaschke factor* \mathbf{b}_{α} is the power series defined by

$$\mathbf{b}_{\alpha}(z) = (z-\alpha)(1-z\overline{\alpha})^{-1} = -\alpha + (1-|\alpha|^2) \sum_{k=0}^{\infty} \overline{\alpha}^k z^{k+1} \quad (\alpha \in \mathbb{B}_1).$$

Since $|\mathbf{b}_{\alpha}^{\boldsymbol{e_{\ell}}}(\gamma)| = |\mathbf{b}_{\alpha}^{\boldsymbol{e_{r}}}(\gamma)| \stackrel{<1}{=} 1 \quad \text{if} \quad |\gamma| < 1, \\ = 1 \quad \text{if} \quad |\gamma| = 1, \end{cases}$, Blaschke factors and products are in $\mathcal{S}_{\mathbb{H}}$.

Example: $\mathbf{b}_{\mathbf{i}/2}\mathbf{b}_{\mathbf{j}/2}\mathbf{b}_{\mathbf{k}/2}$

B. (2021): A power series $f(z) = \sum f_k z^k \in \mathbb{H}[[z]]$ is a Blaschke product of degree k if and only if $P_n = I_n - \mathbf{T}_n^f \mathbf{T}_n^{f*}$ is positive semidefinite and rank $(P_n) = \min(k, n)$ for all $n \ge 1$.

Carathéodory-Schur problem in $\mathcal{S}_{\mathbb{H}}$

Theorem: Given $f_0, \ldots, f_{n-1} \in \mathbb{H}$, there exists an

$$f(z) = f_0 + f_1 z + \ldots + f_{n-1} z^{n-1} + \ldots \in S_{\mathbb{H}}$$
(6)

if and only if $P_n = I - \mathbf{T}_n^f \mathbf{T}_n^{f*} \succeq 0$. If $P_n \succ 0$, then the formula

$$f = (\theta_{11}\varepsilon + \theta_{21})(\theta_{21}\varepsilon + \theta_{22})^{-1} = (\psi_{11} - \varepsilon\psi_{21})^{-1}(\varepsilon\psi_{22} - \psi_{12}), \quad \varepsilon \in \mathcal{S}_{\mathbb{H}}$$

parametrizes all $f \in S_{\mathbb{H}}$ subject to condition (6). Furthermore, f is a finite Blaschke product if and only if ε is. In this case, deg $f = n + \deg \varepsilon$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Carathéodory-Schur problem in $\mathcal{S}_{\mathbb{H}}$

Theorem: Given $f_0, \ldots, f_{n-1} \in \mathbb{H}$, there exists an

$$f(z) = f_0 + f_1 z + \ldots + f_{n-1} z^{n-1} + \ldots \in S_{\mathbb{H}}$$
(6)

if and only if $P_n = I - \mathbf{T}_n^f \mathbf{T}_n^{f*} \succeq 0$. If $P_n \succ 0$, then the formula

$$f = (\theta_{11}\varepsilon + \theta_{21})(\theta_{21}\varepsilon + \theta_{22})^{-1} = (\psi_{11} - \varepsilon\psi_{21})^{-1}(\varepsilon\psi_{22} - \psi_{12}), \quad \varepsilon \in \mathcal{S}_{\mathbb{H}}$$

parametrizes all $f \in S_{\mathbb{H}}$ subject to condition (6). Furthermore, f is a finite Blaschke product if and only if ε is. In this case, deg $f = n + \deg \varepsilon$.

• Linear fractional formulas make sense, since the bottom diagonal entry in P_n^{-1} is positive and $|\varepsilon_0| \le 1$.

• If deg f = m, then

 $\operatorname{rank}(I - \mathbf{T}_k^{\varepsilon} \mathbf{T}_k^{\varepsilon*}) = \operatorname{rank} P_{n+k} - n = \min\{m, n+k\} - n = \min\{m-n, k\}$

Uniform approximation Carathéodory theorem

Theorem: Let $f \in S_{\mathbb{H}}$. For any $\rho < 1$ and $\epsilon > 0$, there exists a finite Blaschke product *B* such that

 $|f^{e_{\ell}}(\alpha) - B^{e_{\ell}}(\alpha)| < \epsilon \quad \text{and} \quad |f^{e_{r}}(\alpha) - B^{e_{r}}(\alpha)| < \epsilon$ for all $\alpha \in \overline{\mathbb{B}}_{\rho}$.

- 周下 - 日下 - 日下 - 日

Uniform approximation Carathéodory theorem

Theorem: Let $f \in S_{\mathbb{H}}$. For any $\rho < 1$ and $\epsilon > 0$, there exists a finite Blaschke product *B* such that

 $|f^{e_{\ell}}(\alpha) - B^{e_{\ell}}(\alpha)| < \epsilon \quad \text{and} \quad |f^{e_{r}}(\alpha) - B^{e_{r}}(\alpha)| < \epsilon$ for all $\alpha \in \overline{\mathbb{B}}_{\rho}$.

Choose *n* such that $2\rho^n < \epsilon$ and assume that $f(z) = \sum_{j \ge 0} f_j z^j$ is not a finite Blaschke product so that $P_n = I - \mathbf{T}_n^f \mathbf{T}_n^{f*} \succ 0$. Then there is a finite Blaschke product *B* having the same first *n* coefficients as *f*. Then $g = \frac{1}{2}(f - B) \in S_{\mathbb{H}}$, and $g(z) = z^n h(z)$ for some $h \in \mathcal{H}_1$. Since $\mathbf{T}_{n+m}^g = \begin{bmatrix} 0 & 0 \\ \mathbf{T}_m^h & 0 \end{bmatrix}$, for any $m \ge 1$, we have

$$I_{m+n} - \mathbf{T}_{n+m}^{g} \mathbf{T}_{n+m}^{g*} = \begin{bmatrix} I_n & 0\\ 0 & I_m - \mathbf{T}_m^h \mathbf{T}_m^{h*} \end{bmatrix} \succeq 0 \quad \text{for all} \quad m \ge 1,$$

and hence, $h \in S_{\mathbb{H}}$. Therefore, for any $\alpha \in \overline{\mathbb{B}}_{\rho}$,

 $|f^{\boldsymbol{e_\ell}}(\alpha) - B^{\boldsymbol{e_\ell}}(\alpha)| = 2|g^{\boldsymbol{e_\ell}}(\alpha)| = 2|\alpha|^n |h^{\boldsymbol{e_\ell}}(\alpha)| \le 2\rho^n < \epsilon.$

ABABA BAGA

The generalized Schur class $\mathcal{S}_{\mathbb{H}}^{\kappa}$

Let us say that $f \in \mathbb{H}[[z]]$ belongs to the generalized Schur class $S_{\mathbb{H}}^{\kappa}$ if the Hermitian matrices $P_n = I - \mathbf{T}_n^f \mathbf{T}_n^{f*}$ have κ negative eigenvalues counted with multiplicities:

 $\nu_{-}(I - \mathbf{T}_{n}^{f}\mathbf{T}_{n}^{f*}) = \kappa \text{ for all } n \geq n_{0}.$

The indefinite Carathéodory problem consists of finding

 $f(z) = f_0 + zf_1 + \ldots + f_{n-1}z^{n-1} + \ldots \in \mathcal{S}_{\mathbb{H}}^{\kappa}$

with minimally possible κ (which is at least $\nu_{-}(P_n)$).

(7)

→ 同 → → 目 → → 目 → の Q ()

The generalized Schur class $\mathcal{S}_{\mathbb{H}}^{\kappa}$

Let us say that $f \in \mathbb{H}[[z]]$ belongs to the generalized Schur class $S_{\mathbb{H}}^{\kappa}$ if the Hermitian matrices $P_n = I - \mathbf{T}_n^f \mathbf{T}_n^{f*}$ have κ negative eigenvalues counted with multiplicities:

 $\nu_{-}(I - \mathbf{T}_{n}^{f}\mathbf{T}_{n}^{f*}) = \kappa \text{ for all } n \geq n_{0}.$

The indefinite Carathéodory problem consists of finding

$$f(z) = f_0 + zf_1 + \ldots + f_{n-1}z^{n-1} + \ldots \in \mathcal{S}_{\mathbb{H}}^{\kappa}$$

$$\tag{7}$$

with minimally possible κ (which is at least $\nu_{-}(P_n)$). If P_n is invertible, then $\kappa_{\min} = \nu_{-}(P_n)$. Moreover, the formula

$$f = (heta_{11}arepsilon + heta_{21})(heta_{21}arepsilon + heta_{22})^{-1} = (\psi_{11} - arepsilon\psi_{21})^{-1}(arepsilon\psi_{22} - \psi_{12})$$

with free parameter $\varepsilon \in \mathcal{S}_{\mathbb{H}}$ subject to conditions

 $\psi_{11,0} - \varepsilon_0 \psi_{21,0} \neq \mathbf{0} \iff \theta_{21,0} \varepsilon_0 + \theta_{22,0} \neq \mathbf{0},$

parametrizes all f of the form (7).

The singular case

Let us suppose that P_n is singular, $\operatorname{rank}(P_n) = d < n$, and let P_r (r < n) be the maximal invertible leading submatrix of P_n .

- 1. If d = r (i.e., $\operatorname{rank}(P_n) = \operatorname{rank}(P_r)$), then there is a unique $f \in S_{\mathbb{H}}^{\kappa}$ ($\kappa = \nu_{-}(P_n) = \nu_{-}(P_r)$) with initial coefficients f_0, \ldots, f_{n-1} .
- 2. If d > r, then the minimally possible κ equals

$$\kappa = \nu_{-}(P_n) + n - d = \nu_{-}(P_n) + \nu_{0}(P_n),$$

where ν_0 stands for the multiplicity of the zero eigenvalue.

マボト イラト イラト 二日

The singular case

Let us suppose that P_n is singular, $\operatorname{rank}(P_n) = d < n$, and let P_r (r < n) be the maximal invertible leading submatrix of P_n .

- 1. If d = r (i.e., $\operatorname{rank}(P_n) = \operatorname{rank}(P_r)$), then there is a unique $f \in S_{\mathbb{H}}^{\kappa}$ ($\kappa = \nu_{-}(P_n) = \nu_{-}(P_r)$) with initial coefficients f_0, \ldots, f_{n-1} .
- 2. If d > r, then the minimally possible κ equals

$$\kappa = \nu_{-}(P_n) + n - d = \nu_{-}(P_n) + \nu_{0}(P_n),$$

where ν_0 stands for the multiplicity of the zero eigenvalue.

• To get all $f \in S_{\mathbb{H}}^{\kappa}$ with the first *n* coefficients equal to f_0, \ldots, f_{n-1} in Case 2, we first choose arbitrary f_n, \ldots, f_{2n-d} to reach the invertible matrix matrix P_{2n-d} and then apply the linear fractional formula to each such choice.

For any $f \in S_{\mathbb{H}}^{\kappa}$, there is $n \geq \kappa$ such that P_n is invertible and $\nu_{-}(P_n) = \kappa$.

For such *n*, define the polynomial Θ as above and conclude that

 $f = (\theta_{11}\varepsilon + \theta_{21})(\theta_{21}\varepsilon + \theta_{22})^{-1}$

for some $\varepsilon \in S_{\mathbb{H}}$ such that $\theta_{21,0}\varepsilon_0 + \theta_{22,0} \neq 0$. Therefore, $\theta_{21}\varepsilon + \theta_{22}$ has no zeros in a neighborhood of the origin and therefore f converges absolutely in this neighborhood.

Thus, the power series $f \in S_{\mathbb{H}}^{\kappa}$ can be left and right evaluated in a neighborhood of the origin giving rise to left and right regular functions $f^{e_{\ell}}$ and $f^{e_{r}}$.

Further elaboration may come from the Krein-Langer type factorization result: For any $f \in S_{\mathbb{H}}^{\kappa}$ there exist $S_L, S_R \in S_{\mathbb{H}}$ and Blaschke products B_L, B_R of degree κ so that f admits coprime power-series factorizations

 $f(z) = B_L(z)^{-1}S_L(z) = S_R(z)B_R(z)^{-1}.$

Furthermore, $B_L B_L^{\sharp} = B_R B_R^{\sharp}$. If we denote by \mathcal{Z} the zero set of the real Blaschke product $\widetilde{B} := B_L B_L^{\sharp} = B_R B_R^{\sharp}$, then the functions f^{e_ℓ} and f^{e_r} admit meromorphic (semi-regular) extensions to $\mathbb{B} \setminus \mathcal{Z}$ by the formulas

 $f^{\boldsymbol{e_\ell}}(\alpha) = \widetilde{B}(\alpha)^{-1} (B_L^{\sharp} S_L)^{\boldsymbol{e_\ell}}(\alpha), \quad f^{\boldsymbol{e_r}}(\alpha) = (S_R B_R^{\sharp})^{\boldsymbol{e_r}}(\alpha) \widetilde{B}(\alpha)^{-1}.$

Excluded parameters

Let us say that $\varepsilon \in S_{\mathbb{H}}$ is an *excluded parameter* of order *m* of the linear fractional transformation

$$\mathsf{L}_{\Psi}[\varepsilon] := (\psi_{11} - \varepsilon \psi_{21})^{-1} (\varepsilon \psi_{22} - \psi_{12}), \quad \Psi = \begin{bmatrix} \psi_{11} & \psi_{12} \\ \psi_{21} & \psi_{22} \end{bmatrix},$$

if $\psi_{11} - \varepsilon \psi_{21} = z^m h$ for some $h \in \mathbb{H}[[z]]$ with $h_0 \neq 0$.

伺 ト イヨト イヨト

Excluded parameters

Let us say that $\varepsilon \in S_{\mathbb{H}}$ is an *excluded parameter* of order *m* of the linear fractional transformation

$$\mathsf{L}_{\Psi}[\varepsilon] := (\psi_{11} - \varepsilon \psi_{21})^{-1} (\varepsilon \psi_{22} - \psi_{12}), \quad \Psi = \begin{bmatrix} \psi_{11} & \psi_{12} \\ \psi_{21} & \psi_{22} \end{bmatrix},$$

if $\psi_{11} - \varepsilon \psi_{21} = z^m h$ for some $h \in \mathbb{H}[[z]]$ with $h_0 \neq 0$.

Theorem: There exists an excluded parameter $\varepsilon \in S_{\mathbb{H}}$ of order *m* if and only if the $m \times m$ bottom principal submatrix of P_n^{-1} is either (1) negative definite, in which case there are infinitely many excluded parameters of order *m*, or

(2) the maximal negative semidefinite bottom principal submatrix of P_n^{-1} , in which case there is a unique excluded parameter ε of order m.

(4月) (1日) (日) 日

Theorem: Let $\varepsilon \in S_{\mathbb{H}}$ be an excluded parameter of order *m*. Then the power series $f_{\varepsilon} = \mathbf{L}_{\Psi}[\varepsilon]$ belongs to $S_{\mathbb{H}}^{\kappa-m}$ and is of the form

 $f_{\varepsilon}(z) = f_0 + \ldots + f_{n-k-1} z^{n-k-1} + f_{\varepsilon,n-k} z^{n-k} + \ldots, \quad f_{\varepsilon,n-k} \neq f_{n-k}.$

In other words, the n - m first coefficients of f_{ε} are equal to prescribed f_0, \ldots, f_{n-k-1} , but $f_{\varepsilon,n-k}$ is different from the prescribed f_{n-k} .