Schur-Positivity for Generalized Nets

Ethan Shelburne
WM Groups, Analysis, Geometry Seminar
University of British Columbia

March 6th, 2024

Chromatic Polynomial (Birkhoff, 1912)

Definition
Given a graph G with vertex set $V(G)$, a proper coloring κ of G in k colors is

$$
\kappa: V(G) \rightarrow\{1,2, \ldots, k\}
$$

such that

$$
\kappa(v) \neq \kappa(u)
$$

if there is an edge between u and v.

Example

Chromatic Polynomial (Birkhoff, 1912)

Definition
Given a graph G, the chromatic polynomial $\chi_{G}(k)$ is the number of proper colorings of G with k colors.

Example

Chromatic Symmetric Function (Stanley, 1995)

Given a proper coloring κ of a graph with vertices $v_{1}, v_{2}, \ldots, v_{N}$ associate a monomial in commuting variables $x_{1}, x_{2}, x_{3}, \ldots$

$$
x_{\kappa\left(v_{1}\right)} x_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{N}\right)} .
$$

Example

(A) (B)
gives $x_{1} x_{2}$.
(B) gives $x_{2} x_{1}=x_{1} x_{2}$.

gives $x_{1} x_{3}$.

Chromatic Symmetric Function (Stanley, 1995)

Definition
Given a graph G with vertices $v_{1}, v_{2}, \ldots, v_{N}$, the chromatic symmetric function is

$$
X_{G}=\sum_{\kappa} x_{\kappa\left(v_{1}\right)} x_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{N}\right)},
$$

where the sum ranges over all proper colorings κ of G.

Chromatic Symmetric Function (Stanley, 1995)

(ㄷ) () has $X_{G}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\cdots+2 x_{1} x_{2}+2 x_{2} x_{3}+2 x_{1} x_{3}+\cdots$.

(A)

(B)

(A) (B)

(B)
(A)
(B)

The chromatic symmetric function is a generalization of the chromatic polynomial in the sense that

$$
X_{G}\left(1^{k}, 0, \ldots\right)=\chi_{G}(k)
$$

where the lefthand side denotes $X_{G}(x)$ with the first k variables set as 1 and all other variables set as 0 .

Symmetric Functions

Definition
A symmetric function is a formal power series f in countably many commuting variables x_{1}, x_{2}, \ldots such that for all permutations π

$$
f\left(x_{1}, x_{2}, \ldots\right)=f\left(x_{\pi(1)}, x_{\pi(2)}, \ldots\right)
$$

The chromatic symmetric function X_{G} is symmetric.

$$
\pi=(1,2)
$$

The algebra of symmetric functions is

$$
\Lambda=\{f \in \mathbb{Q}[[x]] \mid f \text { is symmetric }\} .
$$

Partitions and Diagrams

Definition
A partition $\lambda=\lambda_{1} \geq \cdots \geq \lambda_{\ell}>0$ of N is a weakly decreasing list of positive integers whose sum is N. We then write $\lambda \vdash N$.

Definition
A Young diagram of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \vdash N$ is an array of N boxes in left-justified rows such that row i contains λ_{i} boxes.

Example

The partition $(5,4,3,3,2) \vdash 17$ has the following Young diagram.

Semistandard Young Tableaux

Definition

A semistandard Young tableau (SSYT) of shape λ is a filling of a diagram with positive integers such that rows weakly increase (from left to right) and columns strictly increase (from top to bottom).

Example

$$
T=
$$

We assign a weight to a given SSYT T which is the monomial

$$
x^{T}=x_{1}^{\# 1 s} x_{2}^{\# 2 s} x_{3}^{\# 3 s} \cdots
$$

In our example,

$$
x^{T}=x_{1}^{3} x_{2} x_{4}^{2} x_{5} x_{6}
$$

Schur Functions

Definition
The Schur function of partition λ is

$$
s_{\lambda}=\sum_{T} x^{T}
$$

where the sum spans over all SSYTs T of shape λ.

Example
$s_{21}=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}+2 x_{1} x_{2} x_{3}+\cdots$.

Schur-Positivity and e-Positivity

Definition

The elementary symmetric function e_{i} is given by

$$
e_{i}=s_{\left(1^{i}\right)} .
$$

Moreover, we define for a partition λ,

$$
e_{\lambda}=e_{\lambda_{1}} \cdots e_{\lambda_{k}}
$$

We have that

$$
\left\{e_{\lambda} \mid \lambda \text { is a partition }\right\} \quad \text { and } \quad\left\{s_{\lambda} \mid \lambda \text { is a partition }\right\}
$$

are both bases for Λ.
A graph G is Schur-positive if X_{G} is a nonnegative linear combination of s_{λ}. Likewise, G is e-positive if X_{G} is a nonnegative linear combination of e_{λ}.

$$
\text { e-positivity of } G \Longrightarrow \text { Schur-positivity of } G
$$

Three Major Conjectures: Definitions

The claw graph

$$
K_{13}=\%
$$

is the smallest graph which is neither e-positive nor Schur-positive.

A graph G is claw-free if it has no copies of K_{13} as an induced subgraph.

Example

A claw-free graph.

Definition

An incomparability graph of a poset P is a graph inc (P) such that each element of P is assigned a vertex and u and v are adjacent if and only if u and v are incomparable in P.

Three Major Conjectures

(1) (The Stanley-Stembridge Conjecture, 1993): All claw-free incomparability graphs are e-positive.
(2) (The Nonisomorphic Tree Conjecture, 1995): No two nonisomorphic trees have the same chromatic symmetric function.

Computationally confirmed on up to 29 vertices!

3 (The Claw-Free Conjecture, 1998): All claw-free graphs are Schur-positive.

Claw-Free Conjecture

Theorem (Gasharov, 1996)
If G is a claw-free incomparability graph, then G is Schur-positive.
Gasharov's proof method employs combinatorial object known as a P-array.
Definition
Let $P=(P, \prec)$ be a partially ordered set. A P-array is an array

$a_{1,1}$	$a_{1,2}$	\cdots
$a_{2,1}$	$a_{2,2}$	\cdots

of (distinct) elements in P, arranged in left-justified rows, and satisfying the following condition

$$
a_{i, j} \prec a_{i, j+1} \quad \text { if } \quad a_{i, j} \text { and } a_{i, j+1} \text { are defined. }
$$

Note: A P-array is allowed to have empty rows. The shape of a P-array T is the sequence of row lengths given from top to bottom.

P-Arrays

Example

Consider the following poset P.

Below we depict several examples of P-arrays.

1	$a c$	$b f$		$a e c$
2	d	d	$a b e$	
3			d	$b f$
4	$b f$	$a c$	f	c
5	e	e	c	d

P-Arrays

Given a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$, we define $\pi(\lambda)$ to be the sequence

$$
\lambda_{\pi(1)}-\pi(1)+1, \ldots, \lambda_{\pi(\ell)}-\pi(\ell)+\ell .
$$

Gasharov shows that if $G=\operatorname{inc}(P)$, Schur coefficients satisfy

$$
\left[s_{\lambda}\right] X_{G}=\sum_{(\pi, T) \in A} \operatorname{sgn}(\pi)
$$

where

$$
A=\left\{(\pi, T) \mid \pi \in S_{\ell} \text { and } T \text { is a } P \text {-array of shape } \pi(\lambda)\right\} .
$$

For example,

1	$a c$	$b f$		
2	d	d	$a b e$	a
3	d	d	$b f$	
4	$b f$	$a c$	f	c
5	e	e	c	d

are of shape $\pi(2,1,1,1,1)$ for $\pi=(3,4), \pi=(3,4), \pi=(1,2)$, and $\pi=(2,3)$. Gasharov then constructs a sign-reversing involution on A to prove Schur-positivity for claw-free incomparability graphs!

Research on Schur-Positivity of Chromatic Symmetric Functions

Question: What claw-free non-incomparability graphs can we show are Schur-positive?

Special Rim Hook Tabloids

Example: $\operatorname{sgn}(T)=(-1)^{5}=-1$.

A rim hook is a sequence of connected cells in a Young diagram.

A New Combinatorial Object: SRH G-tabloids

Definition

Let G be a graph with a partial order on the vertices such that nonadjacent vertices are comparable. We define an SRH G-tabloid to be an SRH tabloid such that the cells are filled with all the vertices of G and

- cells spanned by the same rim hook contain vertices which form a stable set,
- and, for each rim hook, reading the corresponding vertices in northeast order results in an increasing sequence.

Example: Equip the vertices of a non-incomparability graph with a total order.

The sign of a SRH G-tabloid is the sign of the underlying SRH tabloid (so, in the above example, $\operatorname{sgn}(T)=1$).

Combinatorial Interpretation for Schur-Coefficients

In (Wang-Wang, 2020), the authors introduce a combinatorial formula for all Schur coefficients of chromatic symmetric functions in terms of SRH tabloids.

We can reinterpret this result in terms of SRH G-tabloids.
Proposition (ES-SvW, 2023)
Consider any graph G with a partial order on the vertices such that nonadjacent vertices are comparable. We have

$$
\left[s_{\lambda}\right] X_{G}=\sum_{T} \operatorname{sgn}(T)
$$

where the sum ranges over all SRH G-tabloids of shape λ.

SRH G-Tabloids Generalize P-Arrays

In the case where $G=\operatorname{inc}(P)$, we found a sign-preserving bijection between P-arrays and SRH G-tabloids.

1	a	$b f$		a e
2	d	d	$a b$	
3			d	$b f$
4	b	a c	f	c
5	e	e	c	d
	\downarrow	\uparrow	\downarrow	\downarrow
	$a-c$	$b-f$	b-e	$a-e$
	d	d	a	f
	f	c	d	b
	b	a	f	c
	e	e	c	d
$\operatorname{sgn}(T)=$	-1	-1	-1	-1

We can now

- write Gasharov's proof in terms of SRH G-tabloids,
- obtain Wang-Wang's result as a corollary to Gasharov's proof.

Combinatorial Interpretation for Schur-Coefficients

Proposition (ES-SvW, 2023)
Consider any graph G on N ordered vertices and a partition $\lambda \vdash N$. We have

$$
\left[s_{\lambda}\right] X_{G}=\sum_{T} \operatorname{sgn}(T)
$$

where the sum ranges over all SRH G-tabloids of shape λ.

- In Wang-Wang's paper, they use this formula to prove certain graphs (squids, etc.) are not Schur-positive.
- Can we use this result to prove Schur-positivity?

Complete Multipartite Graphs

Definition

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ be a partition. A complete multipartite graph K_{λ} is a graph with k stable sets of vertices of respective sizes $\lambda_{1}, \ldots, \lambda_{k}$ with every possible edge between stable sets added.

Example

In (Wang-Wang, 2020), the authors obtain a Schur-positivity classification for complete bipartite and tripartite graphs.

Theorem (ES-SvW, 2023)
Let K_{λ} be a complete multipartite graph with $\ell(\lambda) \geq 2$.
We have that K_{λ} is Schur-positive if and only if either $\lambda_{i} \in\{1,2\}$ for $1 \leq i \leq k$, or $\lambda=\left(3,2^{j}\right)$ for $j \geq 1$.

Generalized Nets

Recall: Our main goal is to make progress toward the Claw-Free Conjecture.
Definition
A generalized net $G N_{n, m}, n \geq 1, n \geq m \geq 0$, is a complete graph on n vertices with m degree one vertices appended to distinct vertices.

Example

- All generalized nets are claw-free.
- Generalized nets are not incomparability graphs for $m \geq 3$.
- Generalized nets $G N_{n, 3}$ are never e-positive (Foley et al., 2018).

Theorem (ES-SvW, 2023): All generalized nets are Schur-positive.

Key Concepts of Proof

- Recall

$$
\left[s_{\lambda}\right] X_{G}=\sum_{T} \operatorname{sgn}(T)
$$

where the sum ranges over all SRH G-tabloids of shape λ.

- Choose a good partial order on the vertices (we use different orders at different points of the proof).
- Focus on coefficients for partitions $\left(\lambda_{1}, \ldots, 1^{k}\right), k \geq 1$.
- Construct maps between SRH G-tabloids to find a recursive formula.

Proposition (ES-SvW, 2023)
Let λ be a partition and assume $\lambda_{\ell}=1$. We then have

$$
\left[s_{\lambda}\right] X_{G N_{n, m}}=m\left[s_{\lambda \backslash 1}\right] X_{G N_{n-1, m-1} \cup P_{1}}+(n-m)\left[s_{\lambda \backslash 1}\right] X_{G N_{n-1, m}}+m\left[s_{\lambda \backslash 1^{2}}\right] X_{G N_{n-1, m-1}}
$$

for $n \geq 2, n \geq m \geq 1$. In this case, $\lambda \backslash 1^{k}$ denotes the partition λ with the last k is removed.

Note: We need entirely different arguments to cover coefficients $\left[s_{\lambda}\right] X_{G N_{n, m}}$ for which $\lambda_{\ell} \neq 1$.

Generalized Nets with Edges Removed

Definition
The graph $G N_{n, m}^{k}$ is a generalized net $G N_{n, m}$ with k disjoint edges removed from (distinct) pairs of degree $n-1$ vertices.

Note: These graphs are not claw-free for $m \geq 1, k \geq 1$.

Example

$$
G N_{5,1}^{2}=
$$

Proposition (ES-SvW, 2023)
Let λ be a partition and assume $\lambda_{\ell}=1$ and $n-2 k \geq m \geq 1$. We then have

$$
\begin{aligned}
{\left[s_{\lambda}\right] X_{G N_{n, m}^{k}} } & =m\left[s_{\lambda \backslash 1}\right] X_{G N_{n-\mathbf{1}, m-\mathbf{1}}^{k} \cup P_{1}}+(n-m-2 k)\left[s_{\lambda \backslash 1}\right] X_{G N_{n-\mathbf{1}, m}^{k}} \\
& +2 k[s \backslash 1] X_{G N_{n-\mathbf{1}, m}^{k-1}}-k\left[s_{\lambda \backslash 1^{2}}\right] X_{G N_{n-\mathbf{2}, m}^{k-1}}+m\left[s_{\lambda \backslash 1^{2}}\right] X_{G N_{n-\mathbf{1}, m-\mathbf{1}}^{k}}
\end{aligned}
$$

Generalized Nets with Edges Removed

Proposition (ES-SvW, 2023)

$$
\begin{aligned}
{\left[s_{\left(2+h, 2^{\left.n-r-t-1,1^{t}\right)}\right.}\right] X_{G N_{n, n-2 r-t+h}^{r}} } & =\binom{n-2 r-t+h}{h} \cdot r!t!(n-2 r-t)! \\
& \cdot \sum_{i=1}^{n-2 r-t+1}(-1)^{i+1}\binom{r+i-1}{r}\binom{n-2 r-i+1}{t}
\end{aligned}
$$

Conjecture (ES-SvW)
$G N_{n, m}^{k}$ is Schur-positive for n sufficiently greater than m.

Generalized Spiders

Definition
Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ be a partition. A generalized spider $G S_{n, \lambda}$ for $n \geq 1, n \geq k \geq 0$, is a complete graph K_{n} with paths of length $\lambda_{1}, \ldots, \lambda_{k}$ appended to distinct vertices in the complete graph.

Example

Proposition (ES-SvW, 2023)
Let λ be a partition and assume $\lambda_{\ell}=1$ and $n \geq 3, m \geq 2$. We then have

$$
\begin{aligned}
{\left[s_{\lambda}\right] X_{\left.G N_{n,\left(\mathbf{2}, \mathbf{1}^{m-1}\right.}\right)} } & =(m-1)\left[s_{\lambda \backslash 1}\right] X_{G N_{n-\mathbf{1},\left(\mathbf{2}, \mathbf{1}^{m-1}\right)} \cup P_{1}}+(n-m)\left[s_{\lambda \backslash 1}\right] X_{G N_{n-\mathbf{1},\left(\mathbf{2}, \mathbf{1}^{m-1}\right)}} \\
& +\left[s_{\lambda \backslash 1}\right] X_{G N_{n,\left(\mathbf{1}^{m-1}\right)} \cup P_{\mathbf{2}}}+\left[s_{\lambda \backslash 1^{\mathbf{3}}}\right] X_{G N_{n-\mathbf{1},\left(\mathbf{1}^{m-\mathbf{1}}\right)}}+m\left[s_{\lambda \backslash 1^{2}}\right] X_{G N_{n-\mathbf{1},\left(\mathbf{2}, \mathbf{1}^{m-\mathbf{2}}\right)}} .
\end{aligned}
$$

Summary of Results and Future Directions

Significance of results?

- The SRH G-tabloid generalizes two combinatorial objects (P-array and SRH tabloid).
- Our proofs introduce new methods of proving Schur-positivity (since Gasharov's 1996 result, there have been very few results/methods toward the Claw-Free Conjecture).
- Generalized nets $G N_{n, 3}$ are the first example we know of an infinite family of (non-tree) graphs which are proven to be Schur-positive but not e-positive.
What can we do next?
- Classify Schur-positivity for generalized nets with edges removed (and try removing other edges instead).
- Prove larger families of generalized spiders are Schur-positive.
- Prove line graphs (which are claw-free) are Schur-positive.

Final question: if the Claw-Free Conjecture is true, does there exist a proof employing a sign-reversing involution on SRH G-tabloids?

Thanks for listening!

References

[1] Angele M. Foley, Joshua Kazdan, Larissa Kroll, Sofia Martinez Alberga, Oleksii Melnyk, and Alexander Tenenbaum. Spiders and their kin: An investigation of Stanley's chromatic symmetric function for spiders and related graphs. 2018.
[2] V Gasharov. Incomparability graphs of $(3+1)$-free posets are s-positive. Discrete Mathematics, 157:107,125, 1996.
[3] Richard P Stanley and John R Stembridge. On immanants of Jacobi-Trudi matrices and permutations with restricted position. Journal of Combinatorial Theory, Series A, 62:261,279, 1993.
[4] R.P. Stanley. A symmetric function generalization of the chromatic polynomial of a graph. Advances in Mathematics, 111(1):166,194, 1995.
[5] David G. L. Wang and Monica M. Y. Wang. Non-Schur-positivity of chromatic symmetric functions. 2020.

Key Concepts of Proof

Call the degree one vertices pendants, the degree n vertices anchors, and the degree $n-1$ vertices buoys. We use a pendant-first labeling:

Assume $\lambda_{\ell}=1$. If the vertex in the bottom cell is an anchor or buoy, it is in its own rim hook. We can remove it and obtain a smaller SRH G-tabloid.

$*$	$*$	$*$
$*$	$*$	
6		

\mapsto

Hence, counting tabloids with anchors and buoys in the bottom position is equivalent to counting tabloids for smaller graphs and partitions. This gives us the following nonnegative terms in the recursion:

$$
m\left[s_{\lambda \backslash 1}\right] X_{G N_{n-1, m-1} \cup P_{1}} \quad \text { and } \quad(n-m)\left[s_{\lambda \backslash 1}\right] X_{G N_{n-\mathbf{1}, m}}
$$

Key Concepts of Proof: Pendant in Bottom Position

Case A: If an edge up from a pendant p is permissible:

sign reversing \checkmark
Case B: If an edge up from p is not permissible, there are two possibilities:
(1) The vertex above p has a smaller label.
(2) Otherwise, p may be below a hook which includes its anchor. Then we also have $p<y_{1}<y_{2}<\cdots<a$.

sign reversing \boldsymbol{V}
the tabloids on the right
fall under subcase 1

Key Concepts of Proof

- We then focus on the subcase 1 tabloids which are not cancelled out be these maps.
- These all have at least two pendants in the bottom positions, which are in decreasing order (read from bottom to top).
- We thus apply similar maps iteratively and eventually obtain our recursive formula:

$$
\left[s_{\lambda}\right] X_{G N_{n, m}}=m\left[s_{\lambda \backslash 1}\right] X_{G N_{n-\mathbf{1}, m-\mathbf{1}} \cup P_{\mathbf{1}}}+(n-m)\left[s_{\lambda \backslash \mathbf{1}}\right] X_{G N_{n-\mathbf{1}, m}}+m\left[s_{\lambda \backslash \mathbf{1}^{2}}\right] X_{G N_{n-1}, m-\mathbf{1}}
$$

- This process resembles a sorting algorithm for pendants in the bottom positions.

Note: We need entirely different arguments to cover coefficients s_{λ} for which $\lambda_{\ell} \neq 1$.

