Equitable Coloring in 1-Planar Graphs

Reem Mahmoud

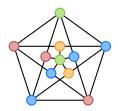
Joint with Daniel W. Cranston

Virginia Commonwealth University

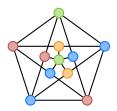
February 7, 2024

• A (proper) r-coloring of G is an assignment φ of colors to V(G) such that $\varphi(x) \neq \varphi(y)$ whenever $xy \in E(G)$.

• A (proper) r-coloring of G is an assignment φ of colors to V(G) such that $\varphi(x) \neq \varphi(y)$ whenever $xy \in E(G)$.

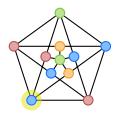


- A (proper) r-coloring of G is an assignment φ of colors to V(G) such that $\varphi(x) \neq \varphi(y)$ whenever $xy \in E(G)$.
- An r-coloring is equitable if all color classes differ in size by at most 1.

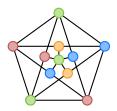


• A (proper) r-coloring of G is an assignment φ of colors to V(G) such that $\varphi(x) \neq \varphi(y)$ whenever $xy \in E(G)$.

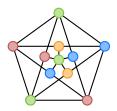
An r-coloring is equitable if all color classes differ in size by at most 1.



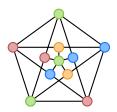
- A (proper) r-coloring of G is an assignment φ of colors to V(G) such that $\varphi(x) \neq \varphi(y)$ whenever $xy \in E(G)$.
- An r-coloring is equitable if all color classes differ in size by at most 1.



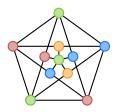
- A (proper) r-coloring of G is an assignment φ of colors to V(G) such that $\varphi(x) \neq \varphi(y)$ whenever $xy \in E(G)$.
- An *r*-coloring is *equitable* if all color classes differ in size by at most 1.
- Color class size is $\lceil |V(G)|/r \rceil$ or $\lfloor |V(G)|/r \rfloor$.



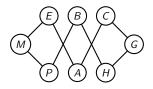
- A (proper) r-coloring of G is an assignment φ of colors to V(G) such that $\varphi(x) \neq \varphi(y)$ whenever $xy \in E(G)$.
- An *r*-coloring is *equitable* if all color classes differ in size by at most 1.
- Color class size is $\lceil |V(G)|/r \rceil$ or $\lfloor |V(G)|/r \rfloor$.
- Introduced by Meyer in 1973.



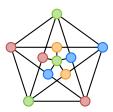
- A (proper) r-coloring of G is an assignment φ of colors to V(G) such that $\varphi(x) \neq \varphi(y)$ whenever $xy \in E(G)$.
- An *r*-coloring is *equitable* if all color classes differ in size by at most 1.
- Color class size is $\lceil |V(G)|/r \rceil$ or $\lfloor |V(G)|/r \rfloor$.
- Introduced by Meyer in 1973.



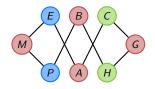
Time slots	11am, 1pm, 3pm	
	English, Biology, Chemistry,	
Courses	Math, Geography,	
	Physics, Art, History	



- A (proper) r-coloring of G is an assignment φ of colors to V(G) such that $\varphi(x) \neq \varphi(y)$ whenever $xy \in E(G)$.
- An *r*-coloring is *equitable* if all color classes differ in size by at most 1.
- Color class size is $\lceil |V(G)|/r \rceil$ or $\lfloor |V(G)|/r \rfloor$.
- Introduced by Meyer in 1973.



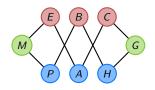
Time slots	11am, 1pm, 3pm	
	English, Biology, Chemistry,	11a
Courses	Math, Geography, Physics, Art, History	Mat Geogra



- A (proper) r-coloring of G is an assignment φ of colors to V(G) such that $\varphi(x) \neq \varphi(y)$ whenever $xy \in E(G)$.
- An *r*-coloring is *equitable* if all color classes differ in size by at most 1.
- Color class size is $\lceil |V(G)|/r \rceil$ or $\lfloor |V(G)|/r \rfloor$.
- Introduced by Meyer in 1973.

λ	\wedge
\leftarrow	
	X/

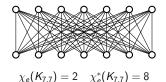
Time slots	11am, 1pm, 3pm	
	English, Biology, Chemistry,	11am
Courses	Math, Geography,	English
Courses	Physics, Art, History	Biology
		Chemistry



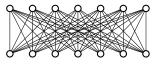
Equitable chromatic number χ_e(G): smallest integer r such that G has an equitable r-coloring.

- Equitable chromatic number χ_e(G): smallest integer r such that G has an equitable r-coloring.
- ► Equitable chromatic threshold \(\chi_e(G)\): smallest integer r such that G has an equitable k-coloring for every k ≥ r.

- Equitable chromatic number χ_e(G): smallest integer r such that G has an equitable r-coloring.
- Equitable chromatic threshold $\chi_e^*(G)$: smallest integer r such that G has an equitable k-coloring for every $k \ge r$.



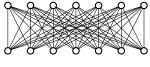
- Equitable chromatic number χ_e(G): smallest integer r such that G has an equitable r-coloring.
- Equitable chromatic threshold $\chi_e^*(G)$: smallest integer r such that G has an equitable k-coloring for every $k \ge r$.



$$\chi_{e}(K_{7,7}) = 2 \quad \chi_{e}^{*}(K_{7,7}) = 8$$

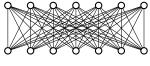
Hajnal-Szemerédi Theorem: Every graph G has an equitable r-coloring for r ≥ Δ + 1.

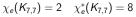
- Equitable chromatic number χ_e(G): smallest integer r such that G has an equitable r-coloring.
- Equitable chromatic threshold $\chi_e^*(G)$: smallest integer r such that G has an equitable k-coloring for every $k \ge r$.
- Hajnal-Szemerédi Theorem: Every graph G has an equitable r-coloring for r ≥ Δ + 1.
- ► HS implies $\chi_e^*(G) \leq \Delta + 1$ for every *G*.

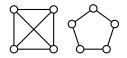


$$\chi_e(K_{7,7}) = 2 \quad \chi_e^*(K_{7,7}) = 8$$

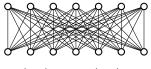
- Equitable chromatic number χ_e(G): smallest integer r such that G has an equitable r-coloring.
- Equitable chromatic threshold $\chi_e^*(G)$: smallest integer r such that G has an equitable k-coloring for every $k \ge r$.
- Hajnal-Szemerédi Theorem: Every graph G has an equitable r-coloring for r ≥ Δ + 1.
- HS implies $\chi_e^*(G) \leq \Delta + 1$ for every G.

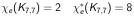


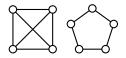




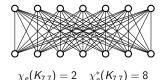
- Equitable chromatic number χ_e(G): smallest integer r such that G has an equitable r-coloring.
- Equitable chromatic threshold $\chi_e^*(G)$: smallest integer r such that G has an equitable k-coloring for every $k \ge r$.
- Hajnal-Szemerédi Theorem: Every graph G has an equitable r-coloring for r ≥ Δ + 1.
- HS implies $\chi_e^*(G) \leq \Delta + 1$ for every G.
- Chen-Lih-Wu Conjecture: If G is connected but not K_{Δ+1}, or C_{2t+1}, or K_{Δ,Δ} with odd Δ, then G has an equitable r-coloring for every r ≥ Δ.

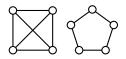


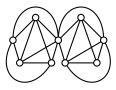




- Equitable chromatic number χ_e(G): smallest integer r such that G has an equitable r-coloring.
- Equitable chromatic threshold $\chi_e^*(G)$: smallest integer r such that G has an equitable k-coloring for every $k \ge r$.
- Hajnal-Szemerédi Theorem: Every graph G has an equitable r-coloring for r ≥ Δ + 1.
- HS implies $\chi_e^*(G) \leq \Delta + 1$ for every G.
- Chen-Lih-Wu Conjecture: If G is connected but not K_{Δ+1}, or C_{2t+1}, or K_{Δ,Δ} with odd Δ, then G has an equitable r-coloring for every r ≥ Δ.
- CLW true for: Bipartite graphs (Lih-Wu 1996); planar graphs with Δ ≥ 8 (Kostochka-Lin-Xiang 2023, Nakprasit 2012, Yap-Zhang 1998); 1-planar graphs with Δ ≥ 17 (Zhang 2016)







▶ Main Theorem (Cranston-M 2023): If $r \ge 13$ and G is 1-planar with $\Delta \le r$, then G has an equitable r-coloring.

- ▶ Main Theorem (Cranston-M 2023): If $r \ge 13$ and G is 1-planar with $\Delta \le r$, then G has an equitable r-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.

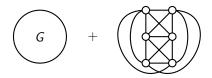
- ▶ Main Theorem (Cranston-M 2023): If $r \ge 13$ and G is 1-planar with $\Delta \le r$, then G has an equitable *r*-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.

▶ Pick 1-planar G with |V(G)| = rs - t for $s \ge 1$ and 0 < t < r

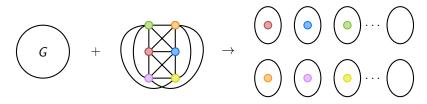
- ▶ Main Theorem (Cranston-M 2023): If $r \ge 13$ and G is 1-planar with $\Delta \le r$, then G has an equitable r-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.
 - ▶ Pick 1-planar G with |V(G)| = rs t for $s \ge 1$ and 0 < t < r

- ▶ Main Theorem (Cranston-M 2023): If $r \ge 13$ and G is 1-planar with $\Delta \le r$, then G has an equitable r-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.
 - Pick 1-planar G with |V(G)| = rs t for $s \ge 1$ and 0 < t < r
 - ► Case 1: t ≤ 6

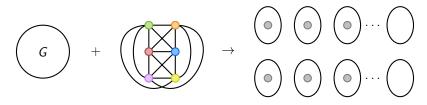
- ▶ Main Theorem (Cranston-M 2023): If $r \ge 13$ and G is 1-planar with $\Delta \le r$, then G has an equitable r-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.
 - ▶ Pick 1-planar G with |V(G)| = rs t for $s \ge 1$ and 0 < t < r
 - ► Case 1: t ≤ 6



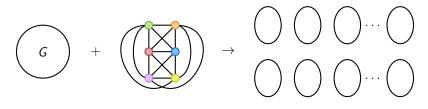
- ▶ Main Theorem (Cranston-M 2023): If $r \ge 13$ and G is 1-planar with $\Delta \le r$, then G has an equitable r-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.
 - ▶ Pick 1-planar G with |V(G)| = rs t for $s \ge 1$ and 0 < t < r
 - ► Case 1: t ≤ 6



- ▶ Main Theorem (Cranston-M 2023): If $r \ge 13$ and G is 1-planar with $\Delta \le r$, then G has an equitable r-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.
 - ▶ Pick 1-planar G with |V(G)| = rs t for $s \ge 1$ and 0 < t < r
 - ► Case 1: t ≤ 6

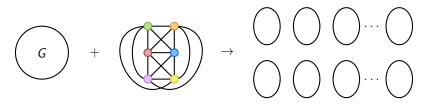


- ▶ Main Theorem (Cranston-M 2023): If $r \ge 13$ and G is 1-planar with $\Delta \le r$, then G has an equitable r-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.
 - ▶ Pick 1-planar G with |V(G)| = rs t for $s \ge 1$ and 0 < t < r
 - ► Case 1: t ≤ 6



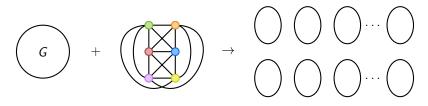
► Case 2: t ≥ 7

- ▶ Main Theorem (Cranston-M 2023): If $r \ge 13$ and G is 1-planar with $\Delta \le r$, then G has an equitable r-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.
 - ▶ Pick 1-planar G with |V(G)| = rs t for $s \ge 1$ and 0 < t < r
 - ► Case 1: t ≤ 6



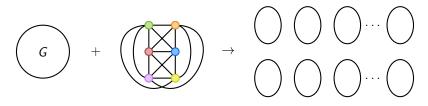
• Case 2: $t \ge 7 \rightarrow 7$ -degenerate

- ▶ Main Theorem (Cranston-M 2023): If $r \ge 13$ and G is 1-planar with $\Delta \le r$, then G has an equitable r-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.
 - ▶ Pick 1-planar G with |V(G)| = rs t for $s \ge 1$ and 0 < t < r
 - ► Case 1: t ≤ 6



▶ Case 2: $t \ge 7 \rightarrow$ 7-degenerate \rightarrow every vertex has ≤ 7 neighbors ahead

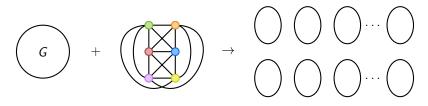
- ▶ Main Theorem (Cranston-M 2023): If $r \ge 13$ and G is 1-planar with $\Delta \le r$, then G has an equitable r-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.
 - ▶ Pick 1-planar G with |V(G)| = rs t for $s \ge 1$ and 0 < t < r
 - ► Case 1: t ≤ 6



Case 2: t ≥ 7 → 7-degenerate → every vertex has ≤ 7 neighbors ahead → delete first r − t vertices

$$\underbrace{\bigcirc_{v_1} \quad \bigvee_{v_2} \quad \bigvee_{v_3} \quad \bigvee_{v_4} \quad \bigvee_{v_5} \quad \bigvee_{v_6} \quad \bigvee_{v_7} \quad \bigvee_{v_8} \quad \bigotimes_{v_9} \quad \bigvee_{v_{10}} \quad \bigotimes_{v_{11}} \quad \bigvee_{v_{12}} \cdots \quad \bigvee_{|V(G)|} \\ |G'| = rs - t - (r - t) = r(s - 1)$$

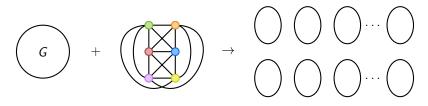
- ▶ Main Theorem (Cranston-M 2023): If $r \ge 13$ and G is 1-planar with $\Delta \le r$, then G has an equitable *r*-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.
 - ▶ Pick 1-planar G with |V(G)| = rs t for $s \ge 1$ and 0 < t < r
 - ► Case 1: t ≤ 6



Case 2: t ≥ 7 → 7-degenerate → every vertex has ≤ 7 neighbors ahead → delete first r − t vertices → coloring vertex i

$$\underbrace{ \begin{array}{c} \bigcirc \\ v_1 \\ \\ |R| = r-t \end{array}}_{|R| = r-t} \underbrace{ \begin{array}{c} \lor \\ v_2 \\ \\ |F| = r-t \end{array}}_{V_2} \underbrace{ \begin{array}{c} \bigcirc \\ \lor \\ v_3 \\ \\ V_5 \\ \\ V_7 \\ V_8 \\ V_7 \\ V_8 \\ V_9 \\ V_9 \\ V_9 \\ V_9 \\ V_9 \\ V_{10} \\ V_{11} \\ V_{11} \\ V_{12} \\ V_{11} \\ V_{12} \\ V_{11} \\ V$$

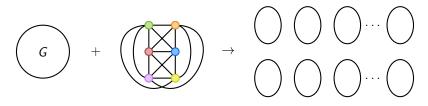
- ▶ Main Theorem (Cranston-M 2023): If $r \ge 13$ and G is 1-planar with $\Delta \le r$, then G has an equitable r-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.
 - ▶ Pick 1-planar G with |V(G)| = rs t for $s \ge 1$ and 0 < t < r
 - ► Case 1: t ≤ 6



Case 2: t ≥ 7 → 7-degenerate → every vertex has ≤ 7 neighbors ahead → delete first r − t vertices → coloring vertex i → # colors to avoid: 7+r − t − i

$$\underbrace{ \bigvee_{v_{1}} \quad \bigvee_{v_{2}} \quad \bigvee_{v_{3}} \quad \bigvee_{v_{4}} \quad \bigcup_{v_{5}} \quad \bigcup_{v_{6}} \quad \bigcup_{v_{7}} \quad \bigvee_{v_{8}} \quad \bigcup_{v_{9}} \quad \bigcup_{v_{10}} \quad \bigcup_{v_{11}} \quad \bigcup_{v_{12}} \cdots \quad \bigcup_{v_{|V|(G)|}} \\ |G'| = rs - t - (r - t) = r(s - 1)$$

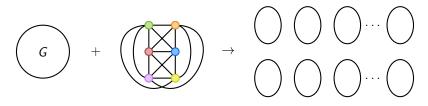
- ▶ Main Theorem (Cranston-M 2023): If $r \ge 13$ and G is 1-planar with $\Delta \le r$, then G has an equitable *r*-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.
 - ▶ Pick 1-planar G with |V(G)| = rs t for $s \ge 1$ and 0 < t < r
 - ► Case 1: t ≤ 6



Case 2: t ≥ 7 → 7-degenerate → every vertex has ≤ 7 neighbors ahead → delete first r − t vertices → coloring vertex i → # colors to avoid: 7+r − t − i ≤ 7 + r − 7 − 1

$$\underbrace{ \bigvee_{v_{1}} \quad \bigvee_{v_{2}} \quad \bigvee_{v_{3}} \quad \bigvee_{v_{4}} \quad \bigcup_{v_{5}} \quad \bigcup_{v_{6}} \quad \bigcup_{v_{7}} \quad \bigvee_{v_{8}} \quad \bigcup_{v_{9}} \quad \bigcup_{v_{10}} \quad \bigcup_{v_{11}} \quad \bigcup_{v_{12}} \cdots \quad \bigcup_{v_{|V|(G)|}} \\ |G'| = rs - t - (r - t) = r(s - 1)$$

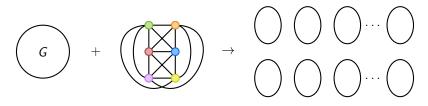
- ▶ Main Theorem (Cranston-M 2023): If $r \ge 13$ and G is 1-planar with $\Delta \le r$, then G has an equitable *r*-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.
 - ▶ Pick 1-planar G with |V(G)| = rs t for $s \ge 1$ and 0 < t < r
 - ► Case 1: t ≤ 6



Case 2: t ≥ 7 → 7-degenerate → every vertex has ≤ 7 neighbors ahead → delete first r − t vertices → coloring vertex i → # colors to avoid: 7+r − t − i ≤ 7 + r − 7 − 1 = r − 1

$$\underbrace{ \bigcup_{v_1} \bigcup_{v_2} \bigcup_{v_3} \bigcup_{v_4} \bigcup_{v_5} \bigcup_{v_5} \bigcup_{v_6} \bigcup_{v_7} \bigcup_{v_7} \bigcup_{v_8} \bigcup_{v_9} \bigcup_{v_{10}} \bigcup_{v_{11}} \bigcup_{v_{12}} \cdots \bigcup_{v_{|v|(G)|}} \bigcup_{|G'| = rs - t - (r - t) = r(s - 1) }$$

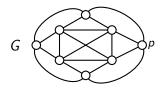
- ▶ Main Theorem (Cranston-M 2023): If $r \ge 13$ and G is 1-planar with $\Delta \le r$, then G has an equitable r-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.
 - ▶ Pick 1-planar G with |V(G)| = rs t for $s \ge 1$ and 0 < t < r
 - ► Case 1: t ≤ 6



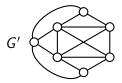
Case 2: t ≥ 7 → 7-degenerate → every vertex has ≤ 7 neighbors ahead → delete first r − t vertices → coloring vertex i → # colors to avoid: 7+r − t − i ≤ 7 + r − 7 − 1 = r − 1 → extra color!

$$\underbrace{ \bigvee_{i_{1}} \quad \bigvee_{v_{2}} \quad \bigvee_{v_{3}} \quad \bigvee_{v_{4}} \quad \bigvee_{v_{5}} \quad \bigvee_{v_{5}} \quad \bigvee_{v_{6}} \quad \bigvee_{v_{7}} \quad \bigvee_{v_{8}} \quad \bigvee_{v_{9}} \quad \bigcup_{v_{10}} \quad \bigvee_{v_{11}} \quad \bigcup_{v_{12}} \quad \cdots \quad \bigvee_{v|v|(G)|} \\ |G'| = rs - t - (r - t) = r(s - 1)$$

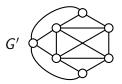
► Fix minimum counterexample



- Fix minimum counterexample
- Delete vertex p of low degree



- Fix minimum counterexample
- Delete vertex p of low degree
- ▶ Get equitable *r*-coloring by minimality



$$|V(G)| = rs = 8, r = 4, s = 2$$

$$v_{3}$$

$$v_{2}$$

$$v_{4}$$

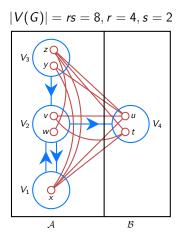
$$v_{4}$$

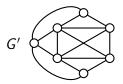
$$v_{1}$$

$$A$$

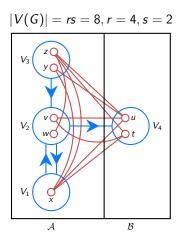
$$B$$

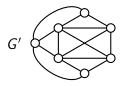
- Fix minimum counterexample
- Delete vertex p of low degree
- Get equitable r-coloring by minimality
- ▶ Pick coloring to maximize |A|





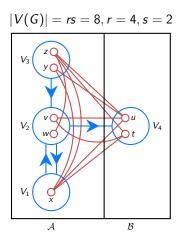
- Fix minimum counterexample
- Delete vertex p of low degree
- Get equitable r-coloring by minimality
- Pick coloring to maximize $|\mathcal{A}|$

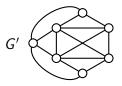




► Goal: Find color class for p or find coloring with bigger |A|

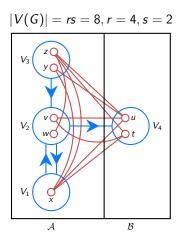
- Fix minimum counterexample
- Delete vertex p of low degree
- Get equitable r-coloring by minimality
- Pick coloring to maximize $|\mathcal{A}|$

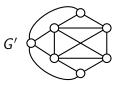




- ▶ Goal: Find color class for p or find coloring with bigger |A|
- Edge Lemma: $|E(G)| \le 4|V(G)| - 8$

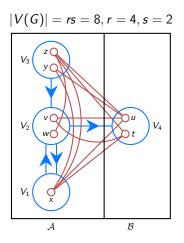
- Fix minimum counterexample
- Delete vertex p of low degree
- Get equitable r-coloring by minimality
- Pick coloring to maximize $|\mathcal{A}|$

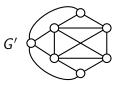




- Goal: Find color class for p or find coloring with bigger |A|
- Edge Lemma: $|E(G)| \le 4|V(G)| - 8$
- If many edges in digraph (blue edges), then can move vertices around

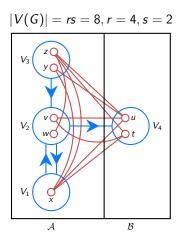
- Fix minimum counterexample
- Delete vertex p of low degree
- Get equitable r-coloring by minimality
- Pick coloring to maximize $|\mathcal{A}|$

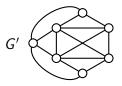




- Goal: Find color class for p or find coloring with bigger |A|
- Edge Lemma: $|E(G)| \le 4|V(G)| - 8$
- If many edges in digraph (blue edges), then can move vertices around
- So, not many blue edges

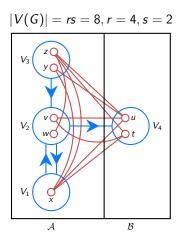
- Fix minimum counterexample
- Delete vertex p of low degree
- Get equitable r-coloring by minimality
- Pick coloring to maximize $|\mathcal{A}|$

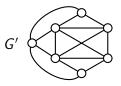




- Goal: Find color class for p or find coloring with bigger |A|
- Edge Lemma: $|E(G)| \le 4|V(G)| - 8$
- If many edges in digraph (blue edges), then can move vertices around
- So, not many blue edges
- So, many edges in graph (red edges)

- Fix minimum counterexample
- Delete vertex p of low degree
- Get equitable r-coloring by minimality
- Pick coloring to maximize $|\mathcal{A}|$





- Goal: Find color class for p or find coloring with bigger |A|
- Edge Lemma: $|E(G)| \le 4|V(G)| - 8$
- If many edges in digraph (blue edges), then can move vertices around
- So, not many blue edges
- So, many edges in graph (red edges)
- But not too many red edges because of Edge Lemma

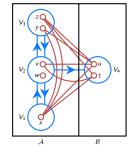
An *r*-coloring is *equitable* if color classes differ in size by at most 1.

- An *r*-coloring is *equitable* if color classes differ in size by at most 1.
- Chen-Lih-Wu Conjecture: If G is connected but not K_{Δ+1}, or K_{Δ,Δ} with odd Δ, or C_{2t+1}, then G has an equitable r-coloring for every r ≥ Δ.

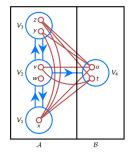
- An r-coloring is equitable if color classes differ in size by at most 1.
- Chen-Lih-Wu Conjecture: If G is connected but not K_{Δ+1}, or K_{Δ,Δ} with odd Δ, or C_{2t+1}, then G has an equitable r-coloring for every r ≥ Δ.
- 1-planar graphs with $\Delta \ge 17$ (Zhang 2016)

- An r-coloring is equitable if color classes differ in size by at most 1.
- Chen-Lih-Wu Conjecture: If G is connected but not K_{Δ+1}, or K_{Δ,Δ} with odd Δ, or C_{2t+1}, then G has an equitable r-coloring for every r ≥ Δ.
- 1-planar graphs with $\Delta \ge 17$ (Zhang 2016)
- Main Theorem (Cranston-M 2023): If r ≥ 13 and G is 1-planar with Δ ≤ r, then G has an equitable r-coloring.

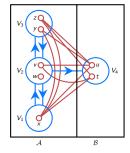
- An r-coloring is equitable if color classes differ in size by at most 1.
- Chen-Lih-Wu Conjecture: If G is connected but not K_{Δ+1}, or K_{Δ,Δ} with odd Δ, or C_{2t+1}, then G has an equitable r-coloring for every r ≥ Δ.
- 1-planar graphs with $\Delta \ge 17$ (Zhang 2016)
- Main Theorem (Cranston-M 2023): If r ≥ 13 and G is 1-planar with Δ ≤ r, then G has an equitable r-coloring.
- Digraph Framework:



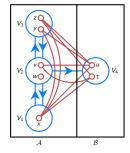
- An r-coloring is equitable if color classes differ in size by at most 1.
- Chen-Lih-Wu Conjecture: If G is connected but not K_{Δ+1}, or K_{Δ,Δ} with odd Δ, or C_{2t+1}, then G has an equitable r-coloring for every r ≥ Δ.
- 1-planar graphs with $\Delta \ge 17$ (Zhang 2016)
- Main Theorem (Cranston-M 2023): If r ≥ 13 and G is 1-planar with Δ ≤ r, then G has an equitable r-coloring.
- Digraph Framework:
 - Find place for p or find coloring with bigger $|\mathcal{A}|$



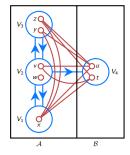
- An r-coloring is equitable if color classes differ in size by at most 1.
- Chen-Lih-Wu Conjecture: If G is connected but not K_{Δ+1}, or K_{Δ,Δ} with odd Δ, or C_{2t+1}, then G has an equitable r-coloring for every r ≥ Δ.
- 1-planar graphs with $\Delta \ge 17$ (Zhang 2016)
- Main Theorem (Cranston-M 2023): If r ≥ 13 and G is 1-planar with Δ ≤ r, then G has an equitable r-coloring.
- Digraph Framework:
 - Find place for p or find coloring with bigger $|\mathcal{A}|$
 - If many edges in digraph (blue edges), then can move vertices around



- An *r*-coloring is *equitable* if color classes differ in size by at most 1.
- Chen-Lih-Wu Conjecture: If G is connected but not K_{Δ+1}, or K_{Δ,Δ} with odd Δ, or C_{2t+1}, then G has an equitable r-coloring for every r ≥ Δ.
- 1-planar graphs with $\Delta \ge 17$ (Zhang 2016)
- Main Theorem (Cranston-M 2023): If r ≥ 13 and G is 1-planar with Δ ≤ r, then G has an equitable r-coloring.
- Digraph Framework:
 - Find place for p or find coloring with bigger $|\mathcal{A}|$
 - If many edges in digraph (blue edges), then can move vertices around
 - So, not many blue edges



- An r-coloring is equitable if color classes differ in size by at most 1.
- Chen-Lih-Wu Conjecture: If G is connected but not K_{Δ+1}, or K_{Δ,Δ} with odd Δ, or C_{2t+1}, then G has an equitable r-coloring for every r ≥ Δ.
- 1-planar graphs with $\Delta \ge 17$ (Zhang 2016)
- Main Theorem (Cranston-M 2023): If r ≥ 13 and G is 1-planar with Δ ≤ r, then G has an equitable r-coloring.
- Digraph Framework:
 - Find place for p or find coloring with bigger $|\mathcal{A}|$
 - If many edges in digraph (blue edges), then can move vertices around
 - So, not many blue edges
 - So, many edges in graph (red edges)



- An r-coloring is equitable if color classes differ in size by at most 1.
- Chen-Lih-Wu Conjecture: If G is connected but not K_{Δ+1}, or K_{Δ,Δ} with odd Δ, or C_{2t+1}, then G has an equitable r-coloring for every r ≥ Δ.
- 1-planar graphs with $\Delta \ge 17$ (Zhang 2016)
- Main Theorem (Cranston-M 2023): If r ≥ 13 and G is 1-planar with Δ ≤ r, then G has an equitable r-coloring.
- Digraph Framework:
 - Find place for p or find coloring with bigger $|\mathcal{A}|$
 - If many edges in digraph (blue edges), then can move vertices around
 - So, not many blue edges
 - So, many edges in graph (red edges)
 - But not too many red edges because of Edge Lemma

