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> Every graph G
has an equitable r-coloring for r > A + 1.

» HS implies x5(G) < A +1 for every G.

> If G is connected but
not Kat1, or Gyep1, or Ka a with odd A, then
G has an equitable r-coloring for every r > A.

» CLW true for: Bipartite graphs (Lih-Wu 1996);
planar graphs with A > 8 (Kostochka-Lin-Xiang
2023, Nakprasit 2012, Yap-Zhang 1998);
1-planar graphs with A > 17 (Zhang 2016)
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» Fix minimum counterexample
» Delete vertex p of low degree ¢
» Get equitable r-coloring by minimality

> Pick coloring to maximize |A|

[V(G)|=rs=8,r=4,5s=2

» Goal: Find color class for p or
find coloring with bigger |.A|
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» So, many edges in graph (red edges)

» But not too many red edges
because of Edge Lemma
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