Equitable Coloring in 1-Planar Graphs

Reem Mahmoud
Joint with Daniel W. Cranston
Virginia Commonwealth University

February 7, 2024

Introduction

- A (proper) r-coloring of G is an assignment φ of colors to $V(G)$ such that $\varphi(x) \neq \varphi(y)$ whenever $x y \in E(G)$.

Introduction

- A (proper) r-coloring of G is an assignment φ of colors to $V(G)$ such that $\varphi(x) \neq \varphi(y)$ whenever $x y \in E(G)$.

Introduction

- A (proper) r-coloring of G is an assignment φ of colors to $V(G)$ such that $\varphi(x) \neq \varphi(y)$ whenever $x y \in E(G)$.
- An r-coloring is equitable if all color classes differ in size by at most 1 .

Introduction

- A (proper) r-coloring of G is an assignment φ of colors to $V(G)$ such that $\varphi(x) \neq \varphi(y)$ whenever $x y \in E(G)$.
- An r-coloring is equitable if all color classes differ in size by at most 1 .

Introduction

- A (proper) r-coloring of G is an assignment φ of colors to $V(G)$ such that $\varphi(x) \neq \varphi(y)$ whenever $x y \in E(G)$.
- An r-coloring is equitable if all color classes differ in size by at most 1 .

Introduction

- A (proper) r-coloring of G is an assignment φ of colors to $V(G)$ such that $\varphi(x) \neq \varphi(y)$ whenever $x y \in E(G)$.
- An r-coloring is equitable if all color classes differ in size by at most 1.
- Color class size is $\lceil|V(G)| / r\rceil$ or $\lfloor|V(G)| / r\rfloor$.

Introduction

- A (proper) r-coloring of G is an assignment φ of colors to $V(G)$ such that $\varphi(x) \neq \varphi(y)$ whenever $x y \in E(G)$.
- An r-coloring is equitable if all color classes differ in size by at most 1.
- Color class size is $\lceil|V(G)| / r\rceil$ or $\lfloor|V(G)| / r\rfloor$.
- Introduced by Meyer in 1973.

Introduction

- A (proper) r-coloring of G is an assignment φ of colors to $V(G)$ such that $\varphi(x) \neq \varphi(y)$ whenever $x y \in E(G)$.
- An r-coloring is equitable if all color classes differ in size by at most 1.
- Color class size is $\lceil|V(G)| / r\rceil$ or $\lfloor|V(G)| / r\rfloor$.
- Introduced by Meyer in 1973.

Time slots	11am, 1pm, 3pm
Courses	English, Biology, Chemistry,
	Math, Geography,
	Physics, Art, History

Introduction

- A (proper) r-coloring of G is an assignment φ of colors to $V(G)$ such that $\varphi(x) \neq \varphi(y)$ whenever $x y \in E(G)$.
- An r-coloring is equitable if all color classes differ in size by at most 1 .
- Color class size is $\lceil|V(G)| / r\rceil$ or $\lfloor|V(G)| / r\rfloor$.
- Introduced by Meyer in 1973.

Time slots	11am, 1pm, 3pm
Courses	English, Biology, Chemistry,
	Math, Geography,
	Physics, Art, History

11am
Math
Geography
Art
Biology

3 pm
Chemistry History

Introduction

- A (proper) r-coloring of G is an assignment φ of colors to $V(G)$ such that $\varphi(x) \neq \varphi(y)$ whenever $x y \in E(G)$.
- An r-coloring is equitable if all color classes differ in size by at most 1.
- Color class size is $\lceil|V(G)| / r\rceil$ or $\lfloor|V(G)| / r\rfloor$.
- Introduced by Meyer in 1973.

Time slots	11am, 1pm, 3pm
Courses	English, Biology, Chemistry,
	Math, Geography,

11am
English
Biology
Chemistry

1 pm
Physics
Art
History

Previous Work

- Equitable chromatic number $\chi_{e}(G)$: smallest integer r such that G has an equitable r-coloring.

Previous Work

- Equitable chromatic number $\chi_{e}(G)$: smallest integer r such that G has an equitable r-coloring.
- Equitable chromatic threshold $\chi_{e}^{*}(G)$: smallest integer r such that G has an equitable k-coloring for every $k \geq r$.

Previous Work

- Equitable chromatic number $\chi_{e}(G)$: smallest integer r such that G has an equitable r-coloring.
- Equitable chromatic threshold $\chi_{e}^{*}(G)$: smallest integer r such that G has an

$$
\chi_{e}\left(K_{7,7}\right)=2 \quad \chi_{e}^{*}\left(K_{7,7}\right)=8
$$ equitable k-coloring for every $k \geq r$.

Previous Work

- Equitable chromatic number $\chi_{e}(G)$: smallest integer r such that G has an equitable r-coloring.
- Equitable chromatic threshold $\chi_{e}^{*}(G)$: smallest integer r such that G has an

$$
\chi_{e}\left(K_{7,7}\right)=2 \quad \chi_{e}^{*}\left(K_{7,7}\right)=8
$$ equitable k-coloring for every $k \geq r$.

- Hajnal-Szemerédi Theorem: Every graph G has an equitable r-coloring for $r \geq \Delta+1$.

Previous Work

- Equitable chromatic number $\chi_{e}(G)$: smallest integer r such that G has an equitable r-coloring.
- Equitable chromatic threshold $\chi_{e}^{*}(G)$: smallest integer r such that G has an

$$
\chi_{e}\left(K_{7,7}\right)=2 \quad \chi_{e}^{*}\left(K_{7,7}\right)=8
$$ equitable k-coloring for every $k \geq r$.

- Hajnal-Szemerédi Theorem: Every graph G has an equitable r-coloring for $r \geq \Delta+1$.
- HS implies $\chi_{e}^{*}(G) \leq \Delta+1$ for every G.

Previous Work

- Equitable chromatic number $\chi_{e}(G)$: smallest integer r such that G has an equitable r-coloring.
- Equitable chromatic threshold $\chi_{e}^{*}(G)$: smallest integer r such that G has an

$$
\chi_{e}\left(K_{7,7}\right)=2 \quad \chi_{e}^{*}\left(K_{7,7}\right)=8
$$ equitable k-coloring for every $k \geq r$.

- Hajnal-Szemerédi Theorem: Every graph G has an equitable r-coloring for $r \geq \Delta+1$.
- HS implies $\chi_{e}^{*}(G) \leq \Delta+1$ for every G.

Previous Work

- Equitable chromatic number $\chi_{e}(G)$: smallest integer r such that G has an equitable r-coloring.
- Equitable chromatic threshold $\chi_{e}^{*}(G)$: smallest integer r such that G has an

$$
\chi_{e}\left(K_{7,7}\right)=2 \quad \chi_{e}^{*}\left(K_{7,7}\right)=8
$$ equitable k-coloring for every $k \geq r$.

- Hajnal-Szemerédi Theorem: Every graph G has an equitable r-coloring for $r \geq \Delta+1$.
- HS implies $\chi_{e}^{*}(G) \leq \Delta+1$ for every G.

- Chen-Lih-Wu Conjecture: If G is connected but not $K_{\Delta+1}$, or $C_{2 t+1}$, or $K_{\Delta, \Delta}$ with odd Δ, then G has an equitable r-coloring for every $r \geq \Delta$.

Previous Work

- Equitable chromatic number $\chi_{e}(G)$: smallest integer r such that G has an equitable r-coloring.
- Equitable chromatic threshold $\chi_{e}^{*}(G)$: smallest integer r such that G has an

$$
\chi_{e}\left(K_{7,7}\right)=2 \quad \chi_{e}^{*}\left(K_{7,7}\right)=8
$$ equitable k-coloring for every $k \geq r$.

- Hajnal-Szemerédi Theorem: Every graph G has an equitable r-coloring for $r \geq \Delta+1$.
- HS implies $\chi_{e}^{*}(G) \leq \Delta+1$ for every G.

- Chen-Lih-Wu Conjecture: If G is connected but not $K_{\Delta+1}$, or $C_{2 t+1}$, or $K_{\Delta, \Delta}$ with odd Δ, then G has an equitable r-coloring for every $r \geq \Delta$.
- CLW true for: Bipartite graphs (Lih-Wu 1996); planar graphs with $\Delta \geq 8$ (Kostochka-Lin-Xiang 2023, Nakprasit 2012, Yap-Zhang 1998); 1-planar graphs with $\Delta \geq 17$ (Zhang 2016)

Our Result

\rightarrow Main Theorem (Cranston-M 2023): If $r \geq 13$ and G is 1-planar with $\Delta \leq r$, then G has an equitable r-coloring.

Our Result

- Main Theorem (Cranston-M 2023): If $r \geq 13$ and G is 1 -planar with $\Delta \leq r$, then G has an equitable r-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.

Our Result

- Main Theorem (Cranston-M 2023): If $r \geq 13$ and G is 1 -planar with $\Delta \leq r$, then G has an equitable r-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.
- Pick 1-planar G with $|V(G)|=r s-t$ for $s \geq 1$ and $0<t<r$

Our Result

- Main Theorem (Cranston-M 2023): If $r \geq 13$ and G is 1 -planar with $\Delta \leq r$, then G has an equitable r-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.
- Pick 1-planar G with $|V(G)|=r s-t$ for $s \geq 1$ and $0<t<r$
- Case 1: $t \leq 6$

Our Result

- Main Theorem (Cranston-M 2023): If $r \geq 13$ and G is 1-planar with $\Delta \leq r$, then G has an equitable r-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.
- Pick 1-planar G with $|V(G)|=r s-t$ for $s \geq 1$ and $0<t<r$
- Case 1: $t \leq 6$

Our Result

- Main Theorem (Cranston-M 2023): If $r \geq 13$ and G is 1-planar with $\Delta \leq r$, then G has an equitable r-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.
- Pick 1-planar G with $|V(G)|=r s-t$ for $s \geq 1$ and $0<t<r$
- Case 1: $t \leq 6$

Our Result

- Main Theorem (Cranston-M 2023): If $r \geq 13$ and G is 1-planar with $\Delta \leq r$, then G has an equitable r-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.
- Pick 1-planar G with $|V(G)|=r s-t$ for $s \geq 1$ and $0<t<r$
- Case 1: $t \leq 6$

\rightarrow

Our Result

- Main Theorem (Cranston-M 2023): If $r \geq 13$ and G is 1 -planar with $\Delta \leq r$, then G has an equitable r-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.
- Pick 1-planar G with $|V(G)|=r s-t$ for $s \geq 1$ and $0<t<r$
- Case 1: $t \leq 6$

Our Result

- Main Theorem (Cranston-M 2023): If $r \geq 13$ and G is 1 -planar with $\Delta \leq r$, then G has an equitable r-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.
- Pick 1-planar G with $|V(G)|=r s-t$ for $s \geq 1$ and $0<t<r$
- Case 1: $t \leq 6$

\longrightarrow

- Case 2: $t \geq 7$

Our Result

- Main Theorem (Cranston-M 2023): If $r \geq 13$ and G is 1 -planar with $\Delta \leq r$, then G has an equitable r-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.
- Pick 1-planar G with $|V(G)|=r s-t$ for $s \geq 1$ and $0<t<r$
- Case 1: $t \leq 6$

\longrightarrow

- Case 2: $t \geq 7 \rightarrow$ 7-degenerate

Our Result

- Main Theorem (Cranston-M 2023): If $r \geq 13$ and G is 1 -planar with $\Delta \leq r$, then G has an equitable r-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.
- Pick 1-planar G with $|V(G)|=r s-t$ for $s \geq 1$ and $0<t<r$
- Case 1: $t \leq 6$

\rightarrow

- Case 2: $t \geq 7 \rightarrow$ 7-degenerate \rightarrow every vertex has ≤ 7 neighbors ahead
$\begin{array}{llllllllllllll}O_{1} & O_{2} & O_{3} & O_{4} & O_{5} & O_{6} & O_{1} & O_{1} & O_{3} & O_{10} & O_{11} & O_{12} & \cdots & \cdots\end{array}$

Our Result

- Main Theorem (Cranston-M 2023): If $r \geq 13$ and G is 1-planar with $\Delta \leq r$, then G has an equitable r-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.
- Pick 1-planar G with $|V(G)|=r s-t$ for $s \geq 1$ and $0<t<r$
- Case 1: $t \leq 6$

\rightarrow

- Case 2: $t \geq 7 \rightarrow 7$-degenerate \rightarrow every vertex has ≤ 7 neighbors ahead \rightarrow delete first $r-t$ vertices

Our Result

- Main Theorem (Cranston-M 2023): If $r \geq 13$ and G is 1-planar with $\Delta \leq r$, then G has an equitable r-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.
- Pick 1-planar G with $|V(G)|=r s-t$ for $s \geq 1$ and $0<t<r$
- Case 1: $t \leq 6$

\rightarrow

- Case 2: $t \geq 7 \rightarrow 7$-degenerate \rightarrow every vertex has ≤ 7 neighbors ahead \rightarrow delete first $r-t$ vertices \rightarrow coloring vertex i

Our Result

- Main Theorem (Cranston-M 2023): If $r \geq 13$ and G is 1-planar with $\Delta \leq r$, then G has an equitable r-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.
- Pick 1-planar G with $|V(G)|=r s-t$ for $s \geq 1$ and $0<t<r$
- Case 1: $t \leq 6$

\rightarrow

- Case 2: $t \geq 7 \rightarrow 7$-degenerate \rightarrow every vertex has ≤ 7 neighbors ahead \rightarrow delete first $r-t$ vertices \rightarrow coloring vertex $i \rightarrow \#$ colors to avoid: $7+r-t-i$

Our Result

- Main Theorem (Cranston-M 2023): If $r \geq 13$ and G is 1-planar with $\Delta \leq r$, then G has an equitable r-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.
- Pick 1-planar G with $|V(G)|=r s-t$ for $s \geq 1$ and $0<t<r$
- Case 1: $t \leq 6$

\rightarrow

- Case 2: $t \geq 7 \rightarrow 7$-degenerate \rightarrow every vertex has ≤ 7 neighbors ahead \rightarrow delete first $r-t$ vertices \rightarrow coloring vertex $i \rightarrow \#$ colors to avoid: $7+r-t-i \leq 7+r-7-1$

Our Result

- Main Theorem (Cranston-M 2023): If $r \geq 13$ and G is 1-planar with $\Delta \leq r$, then G has an equitable r-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.
- Pick 1-planar G with $|V(G)|=r s-t$ for $s \geq 1$ and $0<t<r$
- Case 1: $t \leq 6$

\rightarrow

- Case 2: $t \geq 7 \rightarrow 7$-degenerate \rightarrow every vertex has ≤ 7 neighbors ahead \rightarrow delete first $r-t$ vertices \rightarrow coloring vertex $i \rightarrow \#$ colors to avoid: $7+r-t-i \leq 7+r-7-1=r-1$

Our Result

- Main Theorem (Cranston-M 2023): If $r \geq 13$ and G is 1-planar with $\Delta \leq r$, then G has an equitable r-coloring.
- Divisibility Lemma: If Main Theorem is true for 1-planar graphs with order divisible by r, then it is true for all 1-planar graphs.
- Pick 1-planar G with $|V(G)|=r s-t$ for $s \geq 1$ and $0<t<r$
- Case 1: $t \leq 6$

\rightarrow

- Case 2: $t \geq 7 \rightarrow 7$-degenerate \rightarrow every vertex has ≤ 7 neighbors ahead \rightarrow delete first $r-t$ vertices \rightarrow coloring vertex $i \rightarrow \#$ colors to avoid: $7+r-t-i \leq 7+r-7-1=r-1 \rightarrow$ extra color!

Proof Sketch (equitable r-coloring for $r \geq 13$)

- Fix minimum counterexample

Proof Sketch (equitable r-coloring for $r \geq 13$)

- Fix minimum counterexample
- Delete vertex p of low degree

Proof Sketch (equitable r-coloring for $r \geq 13$)

- Fix minimum counterexample
- Delete vertex p of low degree
- Get equitable r-coloring by minimality

$$
|V(G)|=r s=8, r=4, s=2
$$

Proof Sketch (equitable r-coloring for $r \geq 13$)

- Fix minimum counterexample
- Delete vertex p of low degree
- Get equitable r-coloring by minimality
- Pick coloring to maximize $|\mathcal{A}|$

$$
|V(G)|=r s=8, r=4, s=2
$$

Proof Sketch (equitable r-coloring for $r \geq 13$)

- Fix minimum counterexample
- Delete vertex p of low degree
- Get equitable r-coloring by minimality
- Pick coloring to maximize $|\mathcal{A}|$

$$
|V(G)|=r s=8, r=4, s=2
$$

- Goal: Find color class for p or find coloring with bigger $|\mathcal{A}|$

Proof Sketch (equitable r-coloring for $r \geq 13$)

- Fix minimum counterexample
- Delete vertex p of low degree
- Get equitable r-coloring by minimality
- Pick coloring to maximize $|\mathcal{A}|$

$$
|V(G)|=r s=8, r=4, s=2
$$

- Goal: Find color class for p or find coloring with bigger $|\mathcal{A}|$
- Edge Lemma:
$|E(G)| \leq 4|V(G)|-8$

Proof Sketch (equitable r-coloring for $r \geq 13$)

- Fix minimum counterexample
- Delete vertex p of low degree
- Get equitable r-coloring by minimality
- Pick coloring to maximize $|\mathcal{A}|$

$$
|V(G)|=r s=8, r=4, s=2
$$

- Goal: Find color class for p or find coloring with bigger $|\mathcal{A}|$
- Edge Lemma: $|E(G)| \leq 4|V(G)|-8$
- If many edges in digraph (blue edges), then can move vertices around

Proof Sketch (equitable r-coloring for $r \geq 13$)

- Fix minimum counterexample
- Delete vertex p of low degree
- Get equitable r-coloring by minimality
- Pick coloring to maximize $|\mathcal{A}|$

$$
|V(G)|=r s=8, r=4, s=2
$$

- Goal: Find color class for p or find coloring with bigger $|\mathcal{A}|$
- Edge Lemma: $|E(G)| \leq 4|V(G)|-8$
- If many edges in digraph (blue edges), then can move vertices around
- So, not many blue edges

Proof Sketch (equitable r-coloring for $r \geq 13$)

- Fix minimum counterexample
- Delete vertex p of low degree
- Get equitable r-coloring by minimality
- Pick coloring to maximize $|\mathcal{A}|$

$$
|V(G)|=r s=8, r=4, s=2
$$

- Goal: Find color class for p or find coloring with bigger $|\mathcal{A}|$
- Edge Lemma: $|E(G)| \leq 4|V(G)|-8$
- If many edges in digraph (blue edges), then can move vertices around
- So, not many blue edges
- So, many edges in graph (red edges)

Proof Sketch (equitable r-coloring for $r \geq 13$)

- Fix minimum counterexample
- Delete vertex p of low degree
- Get equitable r-coloring by minimality
- Pick coloring to maximize $|\mathcal{A}|$

$$
|V(G)|=r s=8, r=4, s=2
$$

- Goal: Find color class for p or find coloring with bigger $|\mathcal{A}|$
- Edge Lemma: $|E(G)| \leq 4|V(G)|-8$
- If many edges in digraph (blue edges), then can move vertices around
- So, not many blue edges
- So, many edges in graph (red edges)
- But not too many red edges because of Edge Lemma

Summary

- An r-coloring is equitable if color classes differ in size by at most 1 .

Summary

- An r-coloring is equitable if color classes differ in size by at most 1 .
- Chen-Lih-Wu Conjecture: If G is connected but not $K_{\Delta+1}$, or $K_{\Delta, \Delta}$ with odd Δ, or $C_{2 t+1}$, then
 G has an equitable r-coloring for every $r \geq \Delta$.

Summary

- An r-coloring is equitable if color classes differ in size by at most 1 .
- Chen-Lih-Wu Conjecture: If G is connected but not $K_{\Delta+1}$, or $K_{\Delta, \Delta}$ with odd Δ, or $C_{2 t+1}$, then
 G has an equitable r-coloring for every $r \geq \Delta$.
- 1-planar graphs with $\Delta \geq 17$ (Zhang 2016)

Summary

- An r-coloring is equitable if color classes differ in size by at most 1 .
- Chen-Lih-Wu Conjecture: If G is connected but not $K_{\Delta+1}$, or $K_{\Delta, \Delta}$ with odd Δ, or $C_{2 t+1}$, then
 G has an equitable r-coloring for every $r \geq \Delta$.
- 1-planar graphs with $\Delta \geq 17$ (Zhang 2016)
- Main Theorem (Cranston-M 2023): If $r \geq 13$ and G is 1-planar with $\Delta \leq r$, then G has an equitable r-coloring.

Summary

- An r-coloring is equitable if color classes differ in size by at most 1 .
- Chen-Lih-Wu Conjecture: If G is connected but not $K_{\Delta+1}$, or $K_{\Delta, \Delta}$ with odd Δ, or $C_{2 t+1}$, then
 G has an equitable r-coloring for every $r \geq \Delta$.
- 1-planar graphs with $\Delta \geq 17$ (Zhang 2016)
- Main Theorem (Cranston-M 2023): If $r \geq 13$ and G is 1-planar with $\Delta \leq r$, then G has an equitable r-coloring.
- Digraph Framework:

Summary

- An r-coloring is equitable if color classes differ in size by at most 1 .
- Chen-Lih-Wu Conjecture: If G is connected but not $K_{\Delta+1}$, or $K_{\Delta, \Delta}$ with odd Δ, or $C_{2 t+1}$, then
 G has an equitable r-coloring for every $r \geq \Delta$.
- 1-planar graphs with $\Delta \geq 17$ (Zhang 2016)
- Main Theorem (Cranston-M 2023): If $r \geq 13$ and G is 1-planar with $\Delta \leq r$, then G has an equitable r-coloring.
- Digraph Framework:
- Find place for p or find coloring with bigger $|\mathcal{A}|$

Summary

- An r-coloring is equitable if color classes differ in size by at most 1 .
- Chen-Lih-Wu Conjecture: If G is connected but not $K_{\Delta+1}$, or $K_{\Delta, \Delta}$ with odd Δ, or $C_{2 t+1}$, then
 G has an equitable r-coloring for every $r \geq \Delta$.
- 1-planar graphs with $\Delta \geq 17$ (Zhang 2016)
- Main Theorem (Cranston-M 2023): If $r \geq 13$ and G is 1-planar with $\Delta \leq r$, then G has an equitable r-coloring.
- Digraph Framework:
- Find place for p or find coloring with bigger $|\mathcal{A}|$
- If many edges in digraph (blue edges), then can move vertices around

Summary

- An r-coloring is equitable if color classes differ in size by at most 1 .
- Chen-Lih-Wu Conjecture: If G is connected but not $K_{\Delta+1}$, or $K_{\Delta, \Delta}$ with odd Δ, or $C_{2 t+1}$, then
 G has an equitable r-coloring for every $r \geq \Delta$.
- 1-planar graphs with $\Delta \geq 17$ (Zhang 2016)
- Main Theorem (Cranston-M 2023): If $r \geq 13$ and G is 1-planar with $\Delta \leq r$, then G has an equitable r-coloring.
- Digraph Framework:
- Find place for p or find coloring with bigger $|\mathcal{A}|$
- If many edges in digraph (blue edges), then can move vertices around
- So, not many blue edges

Summary

- An r-coloring is equitable if color classes differ in size by at most 1 .
- Chen-Lih-Wu Conjecture: If G is connected but not $K_{\Delta+1}$, or $K_{\Delta, \Delta}$ with odd Δ, or $C_{2 t+1}$, then
 G has an equitable r-coloring for every $r \geq \Delta$.
- 1-planar graphs with $\Delta \geq 17$ (Zhang 2016)
- Main Theorem (Cranston-M 2023): If $r \geq 13$ and G is 1-planar with $\Delta \leq r$, then G has an equitable r-coloring.
- Digraph Framework:
- Find place for p or find coloring with bigger $|\mathcal{A}|$
- If many edges in digraph (blue edges), then can move vertices around
- So, not many blue edges
- So, many edges in graph (red edges)

Summary

- An r-coloring is equitable if color classes differ in size by at most 1 .
- Chen-Lih-Wu Conjecture: If G is connected but not $K_{\Delta+1}$, or $K_{\Delta, \Delta}$ with odd Δ, or $C_{2 t+1}$, then
 G has an equitable r-coloring for every $r \geq \Delta$.
- 1-planar graphs with $\Delta \geq 17$ (Zhang 2016)
- Main Theorem (Cranston-M 2023): If $r \geq 13$ and G is 1-planar with $\Delta \leq r$, then G has an equitable r-coloring.
- Digraph Framework:
- Find place for p or find coloring with bigger $|\mathcal{A}|$
- If many edges in digraph (blue edges), then can move vertices around
- So, not many blue edges
- So, many edges in graph (red edges)
- But not too many red edges because of Edge Lemma

